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A B S T R A C T

Machine learning, as the prime workhorse of artificial intelligence, aims
to build algorithms with outstanding predictive performance for a va-
riety of tasks. A key challenge is the quest for generalisation for intel-
ligent systems, i.e., how that predictive performance can be assessed
(both theoretically and numerically) and in some cases further pro-
moted, in particular when algorithms are deployed on new datasets
and tasks. Interestingly, studies on generalisation have led to the design
of novel machine learning algorithms, which inherit solid generalisa-
tion abilities. In my academic career since 2010, I have mostly focused
on one of these strategies to study and promote generalisation, the
PAC-Bayes theory, which investigates the generalisation performance
of randomised predictors and is now regarded as an established and
principled approach to generalisation-by-design. In the past decade, it
has garnered increased interest due to its flexibility and promising re-
sults, including in deep learning. Building on concepts and tools from
statistical learning theory and the PAC-Bayes theory, I describe in this
manuscript three sets of contributions in machine learning: (i) estab-
lishing novel generalisation guarantees for deep neural networks (ii)
designing generalisation-driven learning algorithms (iii) unveiling gen-
eralisation guarantees beyond the classical learning frameworks. With
this line of work, I am aiming towards a better understanding of gen-
eralisation in machine learning, with the ultimate goal to contribute to
reduce the massive gap between how humans generalise with a frac-
tion of the data and compute needed by machines, paving the way to
more frugal artificial intelligence systems.

Keywords. Generalisation bounds, PAC-Bayes theory, statistical learn-
ing theory, machine learning.
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1
I N T R O D U C T I O N

This is the manuscript of my "habilitation à diriger des recherches"
(HDR), described in the official texts1 as validating the high scientific level
of the candidate, the originality of his scientific programme, his ability to mas-
ter a research strategy in a sufficiently vast scientific or technological domain,
and his ability to supervise young researchers. The typical form of a HDR
manuscript is a high-level summary of one’s work since their PhD, em-
phasising the research programme and overall directions, and I will
follow that template.

Outline of this manuscript

Chapter 1 introduces my scientific background and the overview of
my contributions spanning my academic career since 2010 across Den-
mark, France and the United Kingdom. Chapter 2 presents a selection
of my works on the study of generalisation for deep neural networks.
Chapter 3 illustrates the principled strategy of deriving new learning al-
gorithms by optimising generalisation bounds. In Chapter 4, I present a
selection of contributions beyond the classical learning paradigms, and
I highlight future research perspectives in Chapter 5. The manuscript
closes with a summary of teaching, supervision and grant management
in Appendix A and my full list of publications in Appendix B.

1 https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000298904/
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1.1 scientific background

This manuscript presents a selection of my scientific contributions since
2010, when I completed my MSc in mathematics at Sorbonne Univer-
sité2 and worked as a research assistant at Danmarks Tekniske Univer-
sitet.3 In February 2011, I started my PhD at Sorbonne Université under
the joint supervision of Gérard Biau and Eric Moulines, and defended
in December 2013. After a short postdoc at Sorbonne Université I was
hired in November 2014 as a (tenured) research scientist at Inria (and
member of the Modal team in the Lille - Nord Europe research centre,
jointly with Laboratoire Paul Painlevé UMR 8524 of Université de Lille).
In December 2018 I started a secondment at University College London
(UCL) with the rank of Associate Professor in machine learning, to lead
the Inria and UCL partnership. I have been a Turing Fellow with the
Alan Turing Institute since 2021.

Since my PhD, slowly but surely, I have developed an obsession with
the notion of generalisation in machine learning, i.e., the study of how
the predictive performance of machine learning algorithms can be as-
sessed and in some cases further promoted, in particular when said
algorithms are deployed on new data sets and tasks. Generalisation is
arguably central to machine learning and artificial intelligence: quali-
tatively, lack of generalisation is commonly known as overfitting and
hints at poor predictive performance. Overfitting occurs when an al-
gorithm "copies" the training data but proves incapable of performing
well on new data. This is, to use a simple analogy, the difference be-
tween memorising exam answers by heart and truly learning a subject.
A crucial concept when it comes to intelligence, be it artificial or not.

Designing algorithms which are able to generalise reliably and effi-
ciently is one of the overarching goals in machine learning. As such,
generalisation bounds are often the hallmark of theoretical guarantees
for machine learning algorithms: this forms a rich field of research
known as statistical learning theory, stemming from foundational con-
tributions starting in the 1960s.

A significant part of my work not only consists in studying the gener-
alisation abilities of existing algorithms (therefore providing a guaran-
tee or certificate4 that the hypothesis performs well on new data, pro-
vided that the assumptions under which the bound was derived are

2 Formerly known as Université Pierre et Marie Curie (UPMC).
3 Denmark Technical University (DTU).
4 Theoretical or numerical – ideally both.
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valid), but also focuses on the design of novel algorithms by optimis-
ing generalisation-promoting training objectives – I call this strategy
generalisation-by-design.

This led to my extensive study of different techniques to study gen-
eralisation in statistical learning theory5, with a particular fondness for
the PAC6-Bayes theory which has never left me7 and ended up being
a central topic in my scientific contributions with about half of my re-
search papers with a more or less pronounced PAC-Bayes flavour. This
culminated into the writing of our recent monograph Hellström et al.
(2024) on generalisation through the lenses of PAC-Bayes and informa-
tion theory, with which this manuscript obviously overlaps.

A learning algorithm is a (potentially stochastic) rule for selecting
a hypothesis (or predictor), given a training data set. Roughly speak-
ing, a problem is PAC learnable if there exists a learning algorithm
such that, for any data distribution, the resulting predictor has a good
performance with high probability. The PAC-Bayes theory investigates
the generalisation performance of randomised predictors and is now
regarded as an established and principled approach to study gener-
alisation and design new learning strategies. In the past decade, it
has garnered increased interest due to its flexibility and promising
results, including in deep learning where understanding and control-
ling overfitting is crucial. PAC-Bayes learning blends concepts from
Bayesian inference and PAC learning. The PAC-Bayes approach deliv-
ers bounds which are probabilistic, offering a ’probably approximately
correct’ guarantee of performance on unseen data. The innovative as-
pect of PAC-Bayes is its ability to provide tighter generalisation bounds
than classical PAC learning, especially in the context of large datasets
and complex models. PAC-Bayes offers a theoretically grounded way
to assess how well a learning algorithm will perform in practice, not
just on the training data but more importantly on new, unseen data.

The PAC-Bayesian approach was pioneered by the seminal works of
Shawe-Taylor and Williamson (1997), McAllester (1998), and McAllester

5 Which has been studied through many angles, such as the Rademacher complex-
ity (Bartlett and Mendelson, 2002), algorithmic stability (Rogers and Wagner, 1978;
Devroye and Wagner, 1979; Bousquet and Elisseeff, 2002), margins (Shawe-Taylor and
Cristianini, 1999), or norms (Neyshabur et al., 2015) to name but a few. See Mohri et al.,
2018 for a comprehensive treatment.

6 Probably Approximately Correct – this acronym was coined by Valiant (1984). Nowa-
days this is arguably the dominant paradigm for analysing generalisation.

7 I must here pay tribute to Pierre Alquier who introduced me to PAC-Bayes during the
very first weeks of my PhD back in February 2011, with commendable enthusiasm and
patience.
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(1999) initially, with significant later contributions from, e.g., Langford
and Seeger (2001), Seeger (2002), Maurer (2004), Catoni (2003), Catoni
(2004), and Catoni (2007), and started as a quest to obtain Bayesian-
flavoured versions of PAC generalisation bounds, as the name implies.
PAC bounds are independent of the specific learning algorithm used,
as they hold uniformly over the class of possible hypotheses. In con-
trast, PAC-Bayesian bounds take into account the learning algorithm
by explicitly incorporating a distribution over hypotheses, hence the
Bayesian suffix. PAC-Bayesian bounds provide insights on how to quan-
tify uncertainty in several machine learning problems, and further study
the level of correlations between equally admissible hypotheses.

In a nutshell, the PAC-Bayes theory leads to (i) generalisation bounds
which can match (minimax) optimal rates of convergence (ii) principled
algorithms and models by minimising an upper bound of the generali-
sation error as a training objective (iii) numerically non-vacuous gener-
alisation guarantees, provably securing future performance on unseen
data. PAC-Bayes is emerging as the prime framework for analysing con-
temporary machine learning algorithms, which is fueled by the fact that
it is one of the few strategies that deliver numerically non-vacuous gen-
eralisation bounds for some deep neural networks architectures. This
manuscripts motivates my scientific vision of fostering generalisation
as a central tool in machine learning, both from a theoretical and al-
gorithmic perspective. I refer the interested reader to my primer on
PAC-Bayesian learning Guedj (2019) for a quick dive into PAC-Bayes;
to the excellent and recently published tutorial Alquier (2024) for a
more hands-on material on PAC-Bayes; and finally to our recent mono-
graph Hellström et al. (2024) for a broader treatment of generalisation
in machine learning.

notation. We consider the training examples to lie in a set Z, re-
ferred to as the instance space. In supervised learning, the instance space
is a product between a feature space X and a label space Y, so that Z = X×
Y. The learning algorithm has access to a training set Z = (Z1, . . . ,Zn) ∈
Zn, consisting of n training examples. Usually, we assume that the
training examples are independent and identically distributed (i.i.d.),8

with each training example being drawn from a data distribution PZ
on Z. We denote the distribution of Z as PZ = Pn

Z.
Confronted with the training data, the learner selects a hypothesis W

from a set W, called the hypothesis space. Again, in supervised learn-

8 This assumption is classical in statistical learning theory, although some of my contri-
butions focus on relaxing and even removing it.
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ing, W is typically a subset of all functions from X to Y, or the param-
eters of such functions. The method by which the learner chooses the
hypothesis is described by a (probabilistic) mapping from the training
set Z to the hypothesis W, denoted by PW|Z and referred to as a learning
algorithm. Mathematically, it can be seen as a stochastic kernel, which
gives rise to a probability distribution on W for each instance of Z. Note
that PW|Z is defined for a specific size n of the training set. We usually
assume that the learning algorithm is flexible with respect to the size
of the training set, so that the mapping PW|Z is defined for any n.

The quality of a specific hypothesis w ∈ W with respect to a sam-
ple z ∈ Z is measured by a loss function, ℓ : W × Z → R+. To give
some classical examples of loss functions, consider supervised learn-
ing, where the sample is decomposed into features and labels (or in-
puts and outputs) as z = (x,y) ∈ X× Y and the hypotheses w ∈ W

are functions w : X → Y. For classification, where the label space Y

is discrete, a typical loss function is the classification error ℓ(w, z) =

1{w(x) ̸= y}. Here, 1{·} denotes the indicator function. For regression,
where the label space is continuous, a standard choice is the squared
loss ℓ(w, z) = (w(x) − y)2.

The true goal of the learner is to select a hypothesis that performs
well on fresh data from the distribution PZ, as measured by the loss
function. This is formalised by the population loss

L(w) := LZ(w) = EPZ
ℓ(w,Z),

sometimes referred to as the (true) risk of a hypothesis. Obviously the
true data distribution is unknown, which implies that the population
loss cannot be computed by the learner. However, by averaging the
loss function over training data, the learner obtains the training loss (or
empirical risk)

L̂(w) := LZ(w) =
1

n

∑
z∈Z

ℓ(w, z),

which serves as an estimate of the population loss. A natural proce-
dure for selecting a hypothesis is to minimise the training loss. This
is referred to as empirical risk minimisation (ERM), and is successful in
finding a hypothesis with low population loss if the difference between
population loss and training loss is small. This is measured by the gen-
eralisation error

gen(w,Z) = L(w) − L̂(w),

which is also called the generalisation gap.
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In the PAC-Bayesian literature, most bounds are on the generalisation
error when averaged over the learning algorithm

EPW|Zgen(W, Z),

and hold with probability at least 1− δ under PZ for some confidence
parameter δ ∈ (0, 1). The change in perspective in the PAC-Bayesian
approach, as compared to the classical statistical learning literature, is
significant. We no longer ask whether there are specific hypotheses w

that perform well: instead, we ask if there are distributions PW|Z over
hypotheses that do. To highlight the conceptual connection to Bayesian
statistics, the distribution PW|Z is usually termed posterior. This dis-
tribution is compared, via information-theoretic metrics (such as the
Kullback-Leibler divergence), to a reference measure called the prior.
Another significant feature that is shared among many PAC-Bayesian
bounds is that they hold uniformly for all choices of posterior: this
opens the way to the strategy of optimising the bounds with respect to
the posterior, as exemplified in Chapter 3.

To simplify notation, we will write L := EPW|ZL(W), L̂ := EPW|Z L̂(W)

and consequently gen := EPW|Zgen(W, Z).

In developing the PAC-Bayesian paradigm, I have focused most of
my research efforts on the following three areas (with most of my re-
search papers contributing to more than one).

axis 1 : theory of generalisation. The literature on generali-
sation bounds has considerably enriched since the early days of PAC-
Bayes in the late 1990s. Generalisation bounds often are variations of
the following prototypical form. In a supervised setting, recall the pop-
ulation loss

LPZ
(w) = EPZ

ℓ(w,Z).

A canonical form of a PAC-Bayes bound is

P

[
EPW|Zgen(W, Z) ⩽ Φ

(
Complexity + log 1

δ

Rate

)]
⩾ 1− δ,

where Complexity denotes a term characterising the difficulty of the
learning problem (in most bounds, this is the Kullback-Leibler diver-
gence between the prior and the posterior), the Rate term is a function
of the sample size n, and Φ is a functional – in the vast majority of the
literature, Φ : x 7→

√
x. A more common form of the bound is

P

EPW|ZLPZ
(w) ⩽ EPW|ZLZ(w) +

√
Complexity + log 1

δ

Rate

 ⩾ 1− δ.
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We note that the term log 1
δ illustrates the tradeoff between how tight

the bound can be, and with what probability it is holding true: the
extreme case δ → 1 leads with probability 1 to the statement that the
generalisation gap is upper bounded by +∞. True, but barely useful!
The typical rate is of order

√
n, although several papers have achieved

so-called fast rates (of order n). See, e.g., the works of Van Erven et al.
(2015) and Grünwald and Mehta (2020).

Thus, these bounds allow controlling the generalisation gap by a
term which measures the complexity of the problem that decreases
with the square root of the number of points on which the algorithm
is trained – all this happening with a probability arbitrarily close to
1. These bounds hold under classical assumptions, such as i.i.d. sam-
ples or bounded data distributions. The Kullback-Leibler divergence
implies that the posterior is absolutely continuous with respect to the
prior (which serves as a reference measure). A large part of my work
has been focused on improving these bounds or extending their scope
of validity. This includes obtaining fast rates [BG-Conf3]; [BG-Conf21],
or substituting the Kullback-Leibler divergence with more general di-
vergences [BG-Journal6]; [BG-Preprint7]; [BG-Preprint10]; [BG-Conf23];
[BG-Preprint16]. It also includes relaxing the necessary assumptions
to obtain bounds [BG-Journal6]; [BG-Journal14]; [BG-Journal15]; [BG-
Journal21]. We have also contributed to extending these results to the
unsupervised setting [BG-Journal9], to ranking [BG-Journal7], to high-
dimensional additive models [BG-Journal2] and to online learning [BG-
Conf17]. We have generalised the form of the discrepancy between pop-
ulation and training losses (from a difference to a generic convex func-
tion, [BG-Conf24]), incorporated a possible hierarchical structure in the
data [BG-Preprint2], and linked generalisation to stability properties of
learning algorithms [BG-Preprint1]. We have developed better concen-
tration inequalities [BG-Conf3]; [BG-Preprint14], extended the range
of usable loss functions (like the error distribution [BG-Preprint5] or
the quantiles of the loss function [BG-Conf7]), and studied the deran-
domisation of posteriors [BG-Conf13]; [BG-Preprint6], along with ex-
tending to the neural tangent kernel model [BG-Journal20], among oth-
ers. We have also contributed to establishing bounds where none pre-
viously existed, for example, for generative models like variational au-
toencoders [BG-Conf16], unsupervised contrastive learning [BG-Conf8],
or models of factorisation of large random matrices [BG-Journal5];
[BG-Conf4]. My contributions have therefore pushed the state-of-the-
art of PAC-Bayes generalisation bounds in a large number of learning
problems and with increasingly weakened assumptions.
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axis 2 : designing new "generalisation-driven" learning

algorithms . A particularly remarkable aspect of the prototypical
bound mentioned is that in the upper bound term

EPW|ZLZ(w) +

√
Complexity + log 1

δ

Rate
,

the different terms are generally calculable or approximable, and of-
ten differentiable. Since most PAC-Bayes bounds hold uniformly for all
posterior, this incentivises to optimise with respect to the posterior. The
major idea, therefore, is to make this upper bound the new learning ob-
jective, optimising to obtain the optimal posterior distribution over pre-
dictors. This represents a profound paradigm shift from the literature:
one of the most classical learning strategies consists of optimising the
empirical error (the famous Empirical Risk Minimisation, ERM prin-
ciple), which often leads to overfitting – this objective has long been
regularised with penalty terms that favour generalisation (such as the
Lasso). I argue for using more directly generalisation-promoting ob-
jectives, i.e., generalisation upper bounds (which must be as tight as
possible, hence the importance of Axis 1 above).

This strategy—which I call generalisation-by-design has been at the
core of several of my works. We have explored this strategy in frame-
works as diverse as federated learning [BG-Preprint12], majority vot-
ing [BG-Conf11]; [BG-Conf14], Wasserstein-regularised learning [BG-
Conf23], and the construction of ad hoc architectures by optimising
a PAC-Bayes generalisation bound [BG-Conf2]; [BG-Journal13]; [BG-
Conf13]; [BG-Conf12]; [BG-Preprint4]; [BG-Conf10], among others. I
highlight two examples of generalisation-by-design in Chapter 3.

axis 3 : from theory to numerical guarantees . Distinctly
and yet complementarily to the previous axis, in certain learning prob-
lems it is possible to numerically calculate the value of the terms in the
upper bound

EPW|ZLZ(w) +

√
Complexity + log 1

δ

Rate
,

and thus, it is possible to provide machine learning practitioners with
guarantees that are not only theoretical but also practical (this is also
referred in some papers as algorithm certification). Concretely, in a clas-
sification problem with a loss function bounded by 1 (such as the 0-1
loss that counts the number of errors on labels, for example of images),
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if the upper bound is greater than 1, the bound is said to be trivial (vac-
uous): although theoretically correct, it provides no useful information
as it upper bounds a number that is bounded by 1, with a quantity
that is larger. Conversely, in the case where the numerical value of the
bound is less than 1 (non-vacuous), it can provide valuable information
on the generalisation performance. This is one of the reasons behind
the impressive surge in interest in PAC-Bayes strategies: Dziugaite and
Roy (2017) was the first demonstration that PAC-Bayes could lead to nu-
merically non-trivial bounds for deep learning. It is in this direction (as
well as for other learning models) that I have also contributed numeri-
cal analyses demonstrating the merits of the PAC-Bayesian approach in
practice [BG-Conf2]; [BG-Journal13]; [BG-Conf13]; [BG-Conf12]; [BG-
Preprint4]; [BG-Conf10]; [BG-Conf11]; [BG-Preprint12]; [BG-Conf3];
[BG-Conf8]; [BG-Conf23]; [BG-Preprint16].

1.2 overview of contributions in this manuscript

The three main axes above articulate my vision of generalisation as the
driving force of learning. Building on concepts and tools from statistical
learning theory and the PAC-Bayes theory, I describe in this manuscript
the following three sets of contributions in machine learning.

(i) non-trivial generalisation guarantees for deep neu-
ral networks . PAC-Bayes delivers state-of-the-art and/or numeri-
cally non-vacuous generalisation bounds for some specific architectures
of deep networks. This is transverse to Axis 1, 2 and 3. I illustrate this in
Chapter 2 through two of my recent papers on that topic: [BG-Conf2]
and [BG-Conf12].

(ii) generalisation-driven learning algorithms . PAC-Bayes
yields generalisation bounds which are often computable (either di-
rectly or through proxies), which incentivises to turn these generali-
sation bounds into training objectives. This matches Axis 2 – and to a
large extent Axis 3. Illustrated in Chapter 3 by two of my recent papers
[BG-Conf11] and [BG-Conf23].

(iii) generalisation beyond the classical learning frame-
works . PAC-Bayes allows to study and understand generalisation in
new settings, where little or no generalisation results exist (including
deep learning). It also allows to relax classical assumptions, extending
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the scope of validity of generalisation guarantees. This is transverse to
Axis 1, 2 and 3. Illustrated in Chapter 4 by two of my recent papers
[BG-Conf8] and [BG-Conf16].

Coherent set of contributions

Note that the frontiers between all three sets of contributions are fairly
porous: several papers could have been moved accross the three chap-
ters, and several others could have been included. I chose to focus on
some of their assets to better illustrate the overall manifesto for PAC-
Bayes as a driving principle of contemporary machine learning.

This forms three pairs of papers ([BG-Conf2]; [BG-Conf8]; [BG-
Conf11]; [BG-Conf16]; [BG-Conf12]; [BG-Conf23]) out of the 70 (as
of February 2024) documents I have written in my academic career, to
highlight my view of machine learning.

With this line of work, I am aiming towards a better understanding of
generalisation in machine learning, with the ultimate goal to contribute
to reduce the massive gap between how humans generalise with a frac-
tion of the data and compute needed by machines, paving the way to
more frugal artificial intelligence systems.

This manuscript sums up some of the overarching guiding principles
of my research since 2010, which progressively sedimented as I built
my research group over the years. It is tempting to see this manuscript
not only as a milestone and a collection of past work, but also as a start-
ing point of new activities and in particular of my group, for which here
is what I call the PAC-Bayes Manifesto, illustrating my view that PAC-
Bayes is one of the rising principles in contemporary machine learning.

The PAC-Bayes Manifesto

⋄ Theory: PAC-Bayes generalisation bounds are, in many cases, ei-
ther the only bounds available or matching the state-of-the-art
(e.g., achieving the optimal rate of convergence), in a broad range
of settings (batch or online, supervised or unsupervised, etc.).

⋄ Algorithms: the PAC-Bayes theory allows generalisation-by-
design. By turning the generalisation bound into a training ob-
jective, we are designing new algorithms (or recovering existing
algorithms) which inherit solid generalisation guarantees.
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⋄ Numerical results: PAC-Bayes leads to numerically non-vacuous
bounds (or certificates) in a broad range of settings, including
deep learning for specific neuronal architectures.

1.3 other contributions

For the sake of conciseness, this manuscript only covers a fraction (6
papers out of 70, about 8%) of my research since 2010. My contributions
are roughly divided in two groups of papers of similar sizes. About half
of my contributions are about generalisation in machine learning and
PAC-Bayes: I list here the papers falling into that category, which I do
not discuss in this manuscript.

- Generalisation bounds for aggregates of predictors [BG-Academic2].

- PAC-Bayes generalisation bounds and MCMC algorithm for the
generalised additive model [BG-Journal2].

- An overview of Bayesian and PAC-Bayesian learning advances
(back in 2015) [BG-Journal3].

- Design, theoretical studies, python implementation and applica-
tion to image denoising of a novel non-linear algorithm for aggre-
gating predictors called COBRA [BG-Journal4]; [BG-Journal8];
[BG-Journal12]; [BG-Conf5].

- Design and theoretical study of a new notion of stability for ma-
chine learning algorithms [BG-Preprint1].

- PAC-Bayesian bounds for non-negative matrix factorisation algo-
rithms [BG-Journal5].

- PAC-Bayesian bounds and algorithm for binary ranking in high
dimensions [BG-Journal7].

- PAC-Bayesian bounds holding with little to no assumptions on
data distributions, and extension to f-divergences [BG-Journal6].

- Theoretical analysis of limitations of the PAC-Bayes approach to
obtain fast rates [BG-Journal14].

- A primer on PAC-Bayesian learning [BG-Conf1] and a mono-
graph on generalisation theory through information-theoretic and
PAC-Bayes bounds [BG-Preprint15].
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- PAC-Bayes analysis and training algorithm for deep neural net-
works [BG-Journal13].

- PAC-Bayes generalisation bounds for the conditional value at risk
[BG-Conf7].

- PAC-Bayesian bounds for majority votes through the use of mar-
gins [BG-Conf14].

- Empirical studies of the role of data-dependent PAC-Bayes pri-
ors in deep learning, and of the performance of deep neural net-
works trained by optimising PAC-Bayes generalisation bounds
[BG-Preprint4]; [BG-Conf10].

- Replacing the Kullback-Leibler divergence by the Wasserstein dis-
tance in PAC-Bayes generalisation bounds, for batch and online
learning [BG-Preprint10]; [BG-Conf23].

- PAC-Bayes generalisation bounds and algorithms for structured
prediction [BG-Preprint2].

- Upper and lower bounds on the performance of kernel PCA [BG-
Preprint3].

- PAC-Bayes-inspired algorithms for federated learning [BG-Preprint12].

- PAC-Bayes bound for controlling the distribution of error rather
than its expectation [BG-Preprint5].

- PAC-Bayes bounds for unbounded losses [BG-Journal15]; [BG-
Journal21].

- A new change of measure inequality for f-divergences [BG-Preprint7]

- Online PAC-Bayes learning [BG-Conf17].

- Derandomised PAC-Bayes bounds [BG-Conf13]; [BG-Preprint6].

- Fast rates for PAC-Bayes bounds [BG-Conf3]; [BG-Conf21].

- Generalisation bounds exploiting flat minima [BG-Preprint14].

- Generalisation bounds with interpolation of divergences [BG-Preprint16]

- A PAC-Bayes-inspired NTK algorithm [BG-Journal20].

- Generalisation bounds for arbitrary convex functionals of the dis-
crepancy between training and population losses [BG-Conf24].
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The other half of my papers address a broader range of contributions,
in machine learning and statistics.

- Sampling strategies for estimating the genetics admixture in pop-
ulation genetics [BG-Academic1]; [BG-Journal1].

- Online clustering algorithms and theoretical analysis [BG-Journal9];
[BG-Conf9].

- Sequential learning of principal curves [BG-Journal16].

- Decentralised learning with copulas [BG-Conf6].

- Revisiting clustering as matrix factorisation on Stiefel manifolds
[BG-Conf4].

- Model validation using mutated training labels [BG-Journal25].

- Analysis of the diffusion and polarisation of opinions on (so-
cial) networks, and strategies to mitigate the emergence of echo
chambers, with applications to content recommendation on social
networks and forecasting of elections results [BG-Conf20]; [BG-
Journal17]; [BG-Conf20]; [BG-Journal26].

- Two-sample, goodness-of-fit, and independence kernel tests based
on the Maximum Mean Discrepancy (MMD), the Kernel Stein Dis-
crepancy (KSD), and the Hilbert Schmidt Independence Criterion
(HSIC) [BG-Journal24]; [BG-Conf18]; [BG-Conf19].

- Novel generalised Bayesian algorithm for uncertainty quantifica-
tion in biology and in particular in anaerobic digestion models
[BG-Journal23].

- On-flight learning of aerodynamics approximation for aircrafts,
and algorithms for trajectory and fuel dynamic optimisation [BG-
Journal11]; [BG-Journal18].

- Introduction of a novel multi-task Gaussian process series of algo-
rithms for time series forecasting and clustering [BG-Journal19];
[BG-Journal22].

- Introduction of a novel latent space data augmentation technique
for imbalanced data classification [BG-Preprint8].

- Introducing and analysing a diffeomorphism-invariant dissimi-
larity measure, and efficiently approximated through Nyström
sampling [BG-Conf15].
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- Closed-form filtering for non-linear systems [BG-Preprint13].

- Online learning algorithms using expert advice [BG-Preprint11].

I also list some non-technical documents.

- Reflections on how research software is referenced [BG-Journal10].

- Using virtue epistemology to evaluate AI in knowledge produc-
tion, aligning it with the distinct needs of fields like social science
and medicine [BG-Preprint9].

- Highlights from the webinar "Covid-19 and AI: unexpected chal-
lenges and lessons" that I co-organised and chaired, witht the
support of the French Embassy in the United Kingdom and the
Franco-British Data Society [BG-TechReport2].

- Reflections on the promotion of qualitative indicators to evaluate
research [BG-TechReport1].
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2
G E N E R A L I S AT I O N F O R D E E P N E U R A L N E T W O R K S

Outline

In this chapter, we present a selection of our contributions to the topic
of generalisation bounds for deep neural networks, and we particu-
larly emphasize that PAC-Bayes leads to numerically non-vacuous up-
per bounds on the risk of some architectures of deep neural networks.

The empirical successes of deep learning since the early 2010s have
rightly attracted growing interest in the theory of deep learning1: among
the numerous contributions in this field in recent years, the interest in
the generalisation performance of algorithms based on deep neural net-
works has been an important component of my research since 2019 [BG-
Journal13]; [BG-Conf13]; [BG-Conf12]; [BG-Conf2]; [BG-Preprint4];
[BG-Conf10]. In [BG-Conf2]; [BG-Journal13]; [BG-Conf13]; [BG-Conf12],
we demonstrated PAC-Bayes generalisation bounds for several neu-
ral network architectures and derived algorithms to minimise these
bounds to directly train the networks. We numerically evaluated the
predictive performance of these networks (trained by PAC-Bayes) and
the numerical value of the bounds. Doing so, we established that the
PAC-Bayesian approach led to new theoretical results, which translated
into (i) original neural architectures (ii) performance similar to the state

1 As often, empirical performance has largely preceded the theoretical understanding of
the algorithms at work.
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of the art (iii) numerical generalisation guarantees (or certificates). We
also conducted in [BG-Preprint4]; [BG-Conf10] empirical studies on
the impact of different choices of prior distributions on predictive per-
formance and numerical values of bounds.

The breakthrough was to establish the mathematical framework which
allowed to derive a bound, and then use it as a training objective. Our
big idea introduced in [BG-Conf2] is to use a binary activation function
in the network: at first glance a curious choice since the sign function
does not play nicely with gradient descent algorithms. But by adopting
a PAC-Bayesian viewpoint (largely innovative in deep learning at that
time), we realised that the prediction made by the network is written
as the expectation of the sign function (composed as many times as
there are layers), which turns out to be the error function of Gauss –
and which is amenable to gradient descent. We were thus able to prove
a PAC-Bayesian bound and train the binary activation network, which
is not directly possible with other methods. The works [BG-Journal13];
[BG-Conf13]; [BG-Conf12] refine this strategy for other architectures
but proceed from a similar trick: for example, in [BG-Conf12] we gen-
eralised the approach by constructing a shallow neural network whose
activation function is the Gaussian error function itself. This leads again
to a training strategy of the network by stochastic gradient descent that
achieves excellent performance.

The ever-growing appetite in the scientific community and beyond
for deep learning fuels our position aimed at delivering "theoretical
and numerical certificates" to neural network architectures to guarantee
their good performance.

We now briefly illustrate our contributions by sketching the ideas
from [BG-Conf2] (NeurIPS 2019) and [BG-Conf12] (ICML 2022).

2.1 pac-bayesian binary activated deep neural networks

In the joint work [BG-Conf2] with Gaël Letarte, Pascal Germain and
François Laviolette (Université Laval, Canada), we introduced a frame-
work, called PBGNet (PAC-Bayesian Binary Gradient Network), to anal-
yse and train multilayer neural networks with binary activation. The
key contributions are (i) the development of an end-to-end training
framework for deep neural networks with binary activations, overcom-
ing the challenge posed by the non-differentiability of the binary acti-
vation function (ii) the establishment of empirically non-vacuous PAC-
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Bayesian generalisation bounds for such networks, demonstrating their
theoretical robustness and potential for practical applications.

We focus our study on deep neural networks with a sign activation
function and unconstrained weights. We call such networks binary acti-
vated multilayer (BAM) networks. This specialisation leads to nonvacu-
ous generalisation bounds which hold under the sole assumption that
training samples are i.i.d.. We provide a PAC-Bayesian bound hold-
ing on the generalisation error of a continuous aggregation of BAM
networks. This leads to an original approach to train BAM networks,
PBGNet. The building block of PBGNet arises from the specialisation
of PAC-Bayesian bounds to linear classifiers (Germain et al., 2009), that
we adapt to deep neural networks (through intermediary results for
shallow networks).

The output of a BAM network with L layers on an input data point
x is given by

fθ(x) = sign
(
WLsign

(
WL−1sign

(
. . . sign

(
W1x

))))
,

where Wk represent the weight matrices of each layer k = 1, . . . ,L. We
consider the averaged network with respect to a PAC-Bayes posterior
Qw (a Gaussian distribution with mean w) given by

Fw(x) = Ev∼Qw
fv(x) = erf

(
w·x√
2∥x∥

)
, with erf(x) = 2√

π

∫x
0 e−t2dt .

Our main result is as follows. The vector θ represents the weights of
any BAM network, and Fθ represents the output of the network. We
consider Gaussian distributions for the prior and posterior.

Theorem 2.1. Given prior parameters µ ∈ RD, with probability at least 1−δ,
we have for all θ on RD

L(Fθ) ⩽ sup
0⩽p⩽1

{
p : kl(L̂(Fθ)∥p) ⩽

1

n
[KL(θ,µ) + ln 2

√
n

δ ]

}
= inf

C>0

{
1

1−e−C

(
1− exp

(
−C L̂(Fθ) −

1

n
[KL(θ,µ) + ln 2

√
n

δ ]

))}
.

In PBGNet, we optimise that bound through stochastic gradient de-
scent. By noting Pµ the Gaussian prior with mean µ, this results in the
following training objective:

Cn L̂(Fw) + KL(Qw∥Pµ) = C
1

2

n∑
i=1

erf
(
−yi

w · xi√
2∥xi∥

)
+

1

2
∥w− µ∥2 .
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One key aspect of PBGNet is that it can be seen as a Kullback-Leibler
regularisation layer of training Bayesian neural networks. Indeed the
computation of the bound relies on two crucial elements: the empirical
loss on the training set and the Kullback-Leibler divergence between
the prior and the posterior distributions of the parameters. This regular-
isation term penalises the discrepancy between the learned parameters
and the prior parameters, encouraging a balance between the loss and
the complexity of the model through the Kullback-Leibler divergence.

We report in the paper the results of numerical experiments on sev-
eral classical datasets; a selection of which is shown in Table 2.1.

Table 2.1: Experiment results for PBGNet on classical binary classification
datasets: error rates on the train and test sets (ES and ET ), and gen-
eralisation bounds (Bnd). The PAC-Bayesian bounds hold with prob-
ability 0.95. The value of the bound is an upper bound (numerical
certificate) for the test error (which is not known) with confidence
95%.

Dataset PBGNet

ES ET Bound

ads 0.033 0.033 0.060

adult 0.149 0.154 0.164

mnist17 0.004 0.004 0.010

mnist49 0.016 0.017 0.028

mnist56 0.009 0.009 0.018

mnistLH 0.026 0.027 0.033

2.2 non-vacuous bounds for shallow neural networks

The paper [BG-Conf12] is mostly the work of Felix Biggs, who is doing
his PhD under my supervision at UCL. We focus on a specific class of
shallow neural networks with a single hidden layer, namely those with
L2-normalised data and either a sigmoid-shaped Gaussian error func-
tion (“erf”) activation or a Gaussian Error Linear Unit (GELU) activa-
tion. For these networks, we derive new generalisation bounds through
the PAC-Bayesian theory; unlike most existing such bounds they apply
to neural networks with deterministic rather than randomised param-
eters. Our bounds are empirically non-vacuous when the network is
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trained with vanilla stochastic gradient descent on MNIST, Fashion-
MNIST, and binary classification versions of the above.

One of the key ideas is to consider the output of neural networks
as PAC-Bayes average of majority votes. Computing the average out-
put of deep neural networks with randomised parameters is generally
intractable: therefore most such works have focused on cases where
the average output is simple to compute, as for example when con-
sidering linear predictors. Here, building on ideas from [BG-Conf13],
we show that provided our predictor structure factorises in a partic-
ular way, more complex majority votes can be constructed. In partic-
ular, we give formulations for randomised predictors whose majority
vote can be expressed as a deterministic single-hidden-layer neural net-
work. Through this, we obtain classification bounds for these determin-
istic predictors that are non-vacuous on the celebrated baselines MNIST
(LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017), and binarised
versions of the above. We believe these are the first such results.

Our work fundamentally relates to the question: what kind of prop-
erties or structures in a trained network indicate likely generalisation
to unseen data? It has been shown by Zhang et al. (2017) that neural
networks trained by SGD can perfectly overfit large datasets with ran-
domised labels, which would indicate a lack of capacity control, while
simultaneously generalising well in a variety of scenarios. Thus, clearly
any certification of generalisation must involve extracting additional
information other than the train loss—for example, the specific final
network chosen by SGD. How do the final parameters of a neural net-
work trained on an “easy” data distribution as opposed to a patholog-
ical (e.g., randomised label) one differ? A common answer to this has
involved the return of capacity control and the norms of the weight ma-
trices, often measured as a distance to the initialisation (as done, e.g., in
Dziugaite and Roy, 2017; Bartlett et al., 2017b; Neyshabur et al., 2018a).

We suggest, following insights from Dziugaite et al. (2020), that a bet-
ter answer lies in utilising the empirically-observed stability of SGD on
easy datasets. We give bounds that are tightest when a secondary run of
SGD on some subset of the training set gives final weights that are close
to the full-dataset derived weights. This idea combines naturally in the
PAC-Bayes framework with the requirement of perturbation-robustness
of the weights—related to the idea of flat-minima (Hinton and Camp,
1993; Hochreiter and Schmidhuber, 1997)—to normalise the distances
between the two runs. By leveraging this commonly-observed empiri-
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cal form of stability we effectively incorporate information about the
inherent easiness of the dataset and how adapted our neural network
architecture is to it. Although it is a deep and interesting theoretical
question as to when and why such stability occurs under SGD, we be-
lieve that by making the link to generalisation explicit we solve some
of the puzzle.

setting . We consider D-class classification on a set X ⊂ Rd with
“score-output” predictors returning values in Ŷ ⊂ RD with multi-class
label space Y = [D], or in Ŷ = R with binary label space Y = {+1,−1}.
The prediction is the argmaximum or sign of the output and the mis-
classification loss is defined as ℓ(f(x),y) = 1{arg maxk∈[D] f(x)[k] ̸= y}

or ℓ(f(x),y) = 1{yf(x) ⩽ 0} respectively. We write

L(f) := E(x,y)∼Dℓ(f(x),y)

and
L̂(f) := m−1

∑
(x,y)∈S

ℓ(f(x),y)

for the risk and empirical risk of the predictors with respect to data
distribution D and i.i.d. m-sized sample S ∼ Dm.

overview of our contributions . We derive generalisation bounds
for a single-hidden-layer neural network FU,V with first and second
layer weights U and V respectively taking the form

FU,V(x) = V ϕ

(
β

Ux

∥x∥2

)
with ϕ being an element-wise activation. We consider such networks
with an erf activation function (we then call the network SHEL, or sin-
gle hidden erf layer), or a GELU activation. The Gaussian Error Linear
Unit (GELU) is a commonly-used alternative to the ReLU activation
defined by GELU(t) := Φ(t) t where Φ(t) is the standard normal CDF.

If the data is normalised to have ∥x∥2 = β these are simply equiv-
alent to one-hidden-layer neural networks with activation ϕ and the
given data norm. We provide high-probability bounds on L(FU,V) of
the approximate form

2Ef∼QL̂(f) +O

(
β∥U−Un∥F + ∥V − Vn∥F√

m−n

)
,
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where Q is a distribution over predictors f, which depends on U and
V but does not necessarily take the form of a neural network. The con-
struction of this randomised proxy Q is central to our PAC-Bayes de-
rived proof methods. The bounds hold uniformly over any choice of
weight matrices, but for many choices the bounds obtained will be vac-
uous; what is interesting is that they are non-vacuous for SGD-derived
solutions on some real-world datasets. Un and Vn are matrices con-
structed using some subset n < m of the data. Since we consider SGD-
derived weights, we can leverage the empirical stability of this train-
ing method (through an idea introduced by Dziugaite et al., 2020) to
construct Un,Vn which are quite close to the final true SGD-derived
weights U,V , essentially by training a prior on the n-sized subset in
the same way.

Our experimental validation on datasets such as Binary-MNIST and
Binary-Fashion MNIST demonstrates the efficacy of our approach – see
Table 2.2. Notably, we achieve test errors and PAC-Bayesian bounds
that underscore the practicality of our theoretical insights for real-life
applications.

Table 2.2: Results for SHEL and GELU networks trained with SGD on MNIST,
Fashion-MNIST, and binarised versions of the above.

Dataset Test Error Bound

SHEL Bin-M 0.037 0.286

SHEL Bin-F 0.085 0.300

SHEL MNIST 0.038 0.522

SHEL Fashion 0.136 0.844

GELU MNIST 0.036 0.317

GELU Fashion 0.135 0.709
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3
G E N E R A L I S AT I O N - D R I V E N A L G O R I T H M S

Outline

In this chapter, we illustrate the second aspect of our manifesto, on
the versatility of PAC-Bayes and the use of generalisation bounds as a
training objective for eliciting novel machine learning algorithms.

The initial PAC-Bayesian bounds in the late 1990s and early 2000s
mainly focused on the excess risk

EX,Yℓ(Y,ϕ(X)) − EX,Yℓ(Y,ϕ⋆(X)),

where ϕ⋆ denotes the optimal predictor (or Bayes predictor: it is the
conditional expectation of Y given X, which is naturally unknown).
These bounds allow studying the minimax learning rate but are not
practically usable. It is primarily during the 2010s that most "empiri-
cal" bounds on the error

EX,Yℓ(Y,ϕ(X)) −
1

n

n∑
i=1

ℓ(Yi,ϕ(Xi))

appear, and under certain assumptions (for example, if the prior and
posterior are Gaussian, the Kullback-Leibler divergence admits a closed
form), it becomes possible to calculate (possibly at the cost of numerical
approximations, like Monte Carlo) the upper bound. As the PAC-Bayes
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bounds are generally valid for any pair (prior, posterior), the strategy
of fixing the prior and optimising over the posterior progressively be-
came central and led to numerical results demonstrating that the algo-
rithms obtained by minimising a PAC-Bayes bound were effective. This
is the strategy I pursued in a significant number of my works since
2018, notably [BG-Journal13]; [BG-Conf13]; [BG-Conf12]; [BG-Conf2];
[BG-Preprint4]; [BG-Conf10] (with neural networks) and [BG-Conf14];
[BG-Preprint12]; [BG-Conf3]; [BG-Conf23]; [BG-Conf11].

Consider the works [BG-Preprint12]; [BG-Conf23]; [BG-Conf11]. In
[BG-Preprint12], we establish a PAC-Bayes generalisation bound for
learning on a network of nodes without each node having to share its
data with others—a typical case of federated learning, which occurs, for
example, when several hospitals wish to collaborate to predict a quan-
tity (e.g., identifying a pathology) without necessarily sharing their data
for privacy reasons and/or physical constraints. The PAC-Bayes bound
is then used to effectively learn a global predictor, whose performances
are similar or superior to the state of the art in several situations. In
[BG-Conf23], we establish the first PAC-Bayes bounds with the Wasser-
stein distance: this is particularly crucial as these bounds can be used
with atomic posteriors, e.g., a Dirac mass on a particular predictor (such
as the empirical risk minimiser, or the result of a stochastic gradient
descent algorithm). This is not possible with the Kullback-Leibler di-
vergence (which requires the prior and posterior to share the same
support). We extended these results in the classical (batch) and online
statistical settings, with numerical results showing predictive perfor-
mances similar to the state of the art and non-trivial bound values. In
[BG-Conf11], we demonstrate (theoretically and empirically) that the
predictive performance of stochastic majority votes (where weights are
sampled from a distribution—the PAC-Bayesian posterior) is superior
to votes with deterministic weights.

We now briefly illustrate our contributions by sketching the main
results from [BG-Conf11] (NeurIPS 2021) and [BG-Conf23] (NeurIPS
2023).

3.1 learning stochastic majority votes

Our paper [BG-Conf11] is a joint work led by my postdoc Valentina
Zantedeschi, with Paul Viallard, Emilie Morvant, Rémi Emonet, Amaury
Habrad and Pascal Germain. In that paper, we proved a new PAC-Bayes
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bound for stochastic majority votes using Dirichlet distributions on the
simplex defined by initial weak predictors.

We investigate a stochastic counterpart of majority votes over finite
ensembles of classifiers, and study its generalisation properties. While
our approach holds for arbitrary distributions, we instantiate it with
Dirichlet distributions: this allows for a closed-form and differentiable
expression for the expected risk, which then turns the generalization
bound into a tractable training objective. The resulting stochastic major-
ity vote learning algorithm inherits informative generalisation proper-
ties. It achieves state-of-the-art accuracy and benefits from (non-vacuous)
tight generalization bounds, in a series of numerical experiments when
compared to competing algorithms which also minimize PAC-Bayes
objectives – both with uninformed (data-independent) and informed
(data-dependent) priors.

By combining the outcomes of several predictors, ensemble meth-
ods (Dietterich, 2000) have been shown to provide models that are
more accurate and more robust than each predictor taken singularly.
The key to their success lies in harnessing the diversity of the set of
predictors (Kuncheva, 2004). Among ensemble methods, weighted Ma-
jority Votes (MV) classifiers assign a score to each base classifier (i.e.,
voter) and output the most common prediction, given by the weighted
majority. When voters have known probabilities of making an error and
make independent predictions, the optimal weighting is given by the
so-called Naive Bayes rule (Berend and Kontorovich, 2015). However,
in most situations these assumptions are not satisfied, giving rise to
the need for techniques that estimate the optimal combination of voter
predictions from the data.

Among them, PAC-Bayesian based methods are well-grounded ap-
proaches for optimizing the voter weighting. Indeed, PAC-Bayes theory
provides not only bounds on the true error of a MV through generaliza-
tion bounds but is also suited to derive theoretically grounded learn-
ing algorithms (Germain et al., 2009; Parrado-Hernández et al., 2012;
Alquier et al., 2016). PAC-Bayesian guarantees do not stand for all hy-
potheses (i. e.are not expressed as a worst-case analysis) but stand in
expectation over the hypothesis set. The prior brings some prior knowl-
edge on the combination of predictors, and the posterior distribution
is learned (adjusted) to lead to good generalization guarantees; the de-
viation between the prior and the posterior distributions plays a role
in generalization guarantee and is usually captured by the Kullback-
Leibler (KL) divergence. In their essence, PAC-Bayesian results do not
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bound directly the risk of the deterministic MV, but bound the expected
risk of one (or several) base voters randomly drawn according to the
weight distribution of the MV (Langford and Shawe-Taylor, 2002; La-
casse et al., 2006; Lacasse et al., 2010; Germain et al., 2015; Masegosa
et al., 2020).

This randomization scheme leads to upper bounds on the true risk
of the MV that are then used as a proxy to derive PAC-Bayesian gener-
alization bounds. However, the obtained risk certificates are generally
not tight, as they depend on irreducible constant factors, and when
optimized they can lead to sub-optimal weightings. Indeed, by consid-
ering a random subset of base predictors, state-of-the-art methods do
not fully leverage the diversity of the whole set of voters. This is espe-
cially problematic when the voters are weak, and learning to combine
their predictions is critical for good performance.

our contributions . We consider the voter weighting associated
to a MV as a realization of a distribution of voter weightings. We an-
alyze with the PAC-Bayesian framework the expected risk of a MV
drawn from the posterior distribution of MVs. The main difference
with the literature is that we propose a stochastic MV, while previ-
ous works aim at studying randomized evaluations of the true risk
of the deterministic MV. Doing so, we are able to derive tight empir-
ical PAC-Bayesian bounds for our model directly on its expected risk.
We further propose two approaches for optimizing the generalization
bounds, hence learning the optimal posterior: the first optimizes an
analytical and differentiable form of the empirical risk that can be de-
rived when considering Dirichlet distributions; the second optimizes a
Monte Carlo approximation of the expected risk and can be employed
with any form of posterior. In our experiments, we first compare these
two approaches, highlighting in which regimes one is preferable to the
other. Finally, we assess our method’s performance on real benchmarks
with respect to the performance of PAC-Bayesian approaches also learn-
ing MV classifiers. These results indicate that our models enjoy gen-
eralization bounds that are consistently tight and non-vacuous both
when studying ensembles of data-independent predictors and when
studying ensembles of data-dependent ones.

Consider the data random variable (X, Y), taking values in X×Y with
X ⊆ Rd a d-dimensional representation space and Y the set of labels.
We denote P the (unknown) data distribution of (X, Y). We define a set
(dictionary) of base classifiers D={hj : X → Y}Mj=1. The weighted major-
ity vote classifier is a convex combination of the base classifiers from D.

26



Formally, a MV is parameterized by a weight vector θ ∈ [0, 1]M, such
that

∑M
j=1 θj = 1 hence lying in the (M-1)-simplex ∆M−1, as follows:

fθ(x) = arg max
y∈Y

M∑
j=1

θj 1(hj(x) = y),

where 1(·) is the indicator function. Let Wθ(X, Y) be the random vari-
able corresponding to the total weight assigned to base classifiers that
predict an incorrect label on (X, Y), that is

Wθ(X, Y) =
M∑
j=1

θj1(hj(X) ̸= Y).

We refer to Figure 3.1 for a visualisation of the density of the ran-
dom weights. In binary classification with |Y|=2, the MV errs whenever
Wθ(X, Y) ⩾ 0.5 (Lacasse et al., 2010; Masegosa et al., 2020). Hence the
true risk (with respect to 01-loss) of the MV classifier can be expressed
as

R(fθ) = EP 1(Wθ(X, Y) ⩾ 0.5) = P(Wθ ⩾ 0.5). (3.1)

Similarly, the empirical risk of fθ on a n-sample S={(xi,yi)∼P}
n
i=1 is

given by

R̂(fθ) =

n∑
i=1

1(Wθ(xi,yi) ⩾ 0.5).

Note that the results we introduce in the following are stated for binary
classification, but are valid also in the multi-class setting (|Y|>2).

One of the key results in our paper is an adaptation of Seeger’s
bound with informed priors, which is then turned into a training objec-
tive and effectively implemented. The dataset is split into two bits, one
with m points and the other one with n−m.

Theorem 3.1 (Seeger’s bound with informed priors). Let π⩽m and ρ⩽m

be the prior and posterior distributions depending on [1 : m], and π>m and
ρ>m the prior and posterior distributions depending on [n−m : n]. For any
p∈(0, 1) and δ ∈ (0, 1) with probability at least 1−δ we have

kl
(
pR̂(ρ>m) + (1− p)R̂(ρ⩽m)

∥∥pR⩽m(ρ>m) + (1− p)>m(ρ⩽m)
)

⩽
p KL(ρ>m,π>m)

m
+

(1− p) KL(ρ⩽m,π⩽m)

n−m
+

ln 4
√

m(n−m)

δ

n
,
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Figure 3.1: Visualization of the density measure ρ : ∆2 → R+ taking the form
of a Dirichlet distribution, with concentration parameters α. The
darker the color, the higher ρ(θ). Each θ on the simplex corre-
sponds to a majority vote classifier fθ and has an associated prob-
ability depending on α.

with
R(ρ>m) =

∫
Θ>m

R(fθ)ρ(dθ),

R(ρ⩽m) =

∫
Θ⩽m

R(fθ)ρ(dθ),

R̂⩽m(ρ>m)=

∫
Θ>m

R̂(fθ)ρ(dθ),

and
R̂⩽m(ρ>m)=

∫
Θ⩽m

R̂(fθ)ρ(dθ).

3.2 learning via wasserstein-based generalisation bounds

[BG-Conf23] is a joint work led by Paul Viallard, with Maxime Had-
douche and Umut Şimşekli.

Despite its successes and unfailing surge of interest in recent years,
a limitation of the PAC-Bayesian framework is that most bounds in-
volve a Kullback-Leibler (KL) divergence term (or its variations), which
might exhibit erratic behavior and fail to capture the underlying ge-
ometric structure of the learning problem – hence restricting its use
in practical applications. As a remedy, recent studies have attempted
to replace the KL divergence in the PAC-Bayesian bounds with the
Wasserstein distance. Even though these bounds alleviated the afore-
mentioned issues to a certain extent, they either hold in expectation,
are for bounded losses, or are nontrivial to minimize. In this work,
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we prove novel Wasserstein distance-based PAC-Bayesian generalisa-
tion bounds for both batch learning with independent and identically
distributed (i.i.d.) data, and online learning with potentially non-i.i.d.
data. Contrary to previous art, our bounds are stronger in the sense that
(i) they hold with high probability, (ii) they apply to unbounded (poten-
tially heavy-tailed) losses, and (iii) they lead to optimizable training ob-
jectives. As a result we derive novel Wasserstein-based PAC-Bayesian
learning algorithms and we illustrate their empirical advantage on a
variety of experiments.

Typically, a learning problem is described by a tuple (H,Z, ℓ) consist-
ing of a hypothesis (or predictor) space H, a data space Z, and a loss
function ℓ : H× Z → R. The goal is to estimate the population risk of a
given hypothesis h, defined as RD(h) = Ez∼D[ℓ(h, z)], where D denotes
the unknown data distribution over Z. As D is not known, in practice,
a hypothesis h is usually built by (approximately) minimising the em-
pirical risk, given by R̂S(h) = 1

m

∑m
i=1 ℓ(h, zi), where S = {zi ∈ Z}mi=1

is a dataset of m data points, independent and identically distributed
(i.i.d.) from D. We define the generalisation gap of a hypothesis h as
R̂S(h) − RD(h).

While a plethora of techniques have been introduced, the PAC-Bayes
framework has gained significant traction over the past two decades to
provide non-vacuous generalisation guarantees for complex structures
such as neural networks during the training phase (see Chapter 2). The
bounds are also used to derive learning algorithms by minimising the
right-hand side of a given bound. Beyond neural networks, the flexi-
bility of PAC-Bayes learning makes it a useful toolbox to derive both
theoretical results and practical algorithms in various learning fields
such as reinforcement learning (Fard and Pineau, 2010), online learn-
ing ([BG-Conf17]), multi-armed bandits (Seldin et al., 2011; Seldin et
al., 2012; Sakhi et al., 2023), meta-learning (Amit and Meir, 2018; Farid
and Majumdar, 2021; Rothfuss et al., 2021; Rothfuss et al., 2022; Ding
et al., 2021) to name but a few.

While PAC-Bayesian bounds remain nowadays of the utmost interest
to explain generalisation in various learning problems they mostly rely
on the KL divergence or variants which causes two main limitations: (i)
as illustrated in the generative modeling literature, the KL divergence
does not incorporate the underlying geometry or topology of the data
space Z, hence can behave in an erratic way (Arjovsky et al., 2017), (ii)
the KL divergence and its variants require the posterior ρ to be abso-
lutely continuous with respect to the prior π. However, recent studies
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(Camuto et al., 2021) have shown that, in stochastic optimisation, the
distribution of the iterates, which is the natural choice for the posterior,
can converge to a singular distribution, which does not admit a density
with respect to the Lebesgue measure. Moreover, the structure of the
singularity (i. e., the fractal dimension of ρ) depends on the data sample
S (Camuto et al., 2021). Hence, in such a case, it would not be possible
to find a suitable prior π that can dominate ρ for almost every S ∼ Dm,
which will trivially make KL(ρ∥π) = +∞ and the generalisation bound
vacuous.

Some works have focused on replacing the Kullback-Leibler diver-
gence with more general divergences in PAC-Bayes ([BG-Journal6];
Ohnishi and Honorio, 2021; [BG-Preprint7]), although the problems
arising from the presence of the KL divergence in the generalisation
bounds are actually not specific to PAC-Bayes: information-theoretic
bounds (Xu and Raginsky, 2017; Russo and Zou, 2020) also suffer from
similar issues as they are based on a mutual information term, which is
the KL divergence between two distributions. In this context, as a rem-
edy to these issues introduced by the KL divergence, Zhang et al., 2018;
Wang et al., 2019; Gálvez et al., 2021; Lugosi and Neu, 2022 proved anal-
ogous bounds that are based on the Wasserstein distance, which arises
from the theory of optimal transport (Monge, 1781). As the Wasserstein
distance inherits the underlying geometry of the data space and does
not require absolute continuity, it circumvents the problems introduced
by the KL divergence. Yet, these bounds hold only in expectation, i. e.,
none of these bounds is holding with high probability over the random
choice of the learning sample S ∼ Dm.

The recent works Amit et al., 2022; Chee and Loustau, 2021 incor-
porated Wasserstein distances as a complexity measure and proved
generalisation bounds based on the Wasserstein distance. More pre-
cisely, Amit et al., 2022 proved a high-probability generic PAC-Bayesian
bound for bounded losses depending on an integral probability metric
(Müller, 1997), which contains the Wasserstein distance as a special case.
On the other hand, Chee and Loustau, 2021 exploited PAC-Bayesian
tools to obtain learning strategies with their associated regret bounds
based on the Wasserstein distance for the online learning setting while
requiring a finite hypothesis space and do not deal with generalisation.

contributions . The theoretical understanding of generalisation
bounds based on the Wasserstein distance is still limited. The aim of
this work is not only to prove generalisation bounds (for different learn-
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ing settings) based on the optimal transport theory but also to propose
new learning algorithms derived from our theoretical results.

(a) Using the supermartingale toolbox introduced in [BG-Journal21];
Chugg et al., 2023, we prove novel PAC-Bayesian bounds based
on the Wasserstein distance for i.i.d. data. While Amit et al., 2022

proposed a McAllester-like bound for bounded losses, we pro-
pose a Catoni-like bound (see e. g., Alquier et al., 2016, Theorem
4.1) valid for heavy-tailed losses with bounded order 2 moments.
This assumption is less restrictive than assuming subgaussian or
bounded losses, which are at the core of many PAC-Bayes results.
This assumption also covers distributions beyond subgaussian
or subexponential ones (e. g., gamma distributions with a scale
smaller than 1, which have an infinite exponential moment).

(b) We provide the first generalisation bounds based on Wasserstein
distances for the online PAC-Bayes framework of [BG-Conf17].
Our results are, again, Catoni-like bounds and hold for heavy-
tailed losses with bounded order 2 moments. Previous work (Chee
and Loustau, 2021) already provided online strategies mixing PAC-
Bayes and Wasserstein distances. However, their contributions fo-
cus on the best deterministic strategy, regularised by a Wasser-
stein distance, with respect to the deterministic notion of regret.
Our results differ significantly as we provide the best-regularised
strategy (still in the sense of a Wasserstein term) with respect to
the notion of generalisation, which is new.

(c) As our bounds are linear with respect to Wasserstein terms (con-
trary to those of Amit et al., 2022), they are well suited for op-
timisation procedures. Thus, we propose the first PAC-Bayesian
learning algorithms based on Wasserstein distances instead of KL
divergences. For the first time, we design PAC-Bayes algorithms
able to output deterministic predictors (instead of distributions
over all H) designed from deterministic priors. This is due to the
ability of the Wasserstein distance to measure the discrepancy be-
tween Dirac distributions. We then instantiate those algorithms
on various datasets, paving the way to promising practical devel-
opments of PAC-Bayes learning.

To sum up, we highlight two benefits of PAC-Bayes learning with
Wasserstein distance. First, it ships with sound theoretical results ex-
ploiting the geometry of the predictor space, holding for heavy-tailed
losses. Such a weak assumption on the loss extends the usefulness of

31



PAC-Bayes with Wasserstein distances to a wide range of learning prob-
lems, encompassing bounded losses. Second, it allows us to consider
deterministic algorithms (i. e., sampling from Dirac measures) designed
with respect to the notion of generalisation: we showcase their perfor-
mance in our experiments.

notation. We consider a predictor space H equipped with a dis-
tance d and a σ-algebra ΣH, a data space Z, and a loss function ℓ :

H × Z → R. In this work, we consider Lipschitz functions with re-
spect to d. We also associate a filtration (Fi)i⩾1 adapted to our data
(zi)i=1,...,m, and we assume that the dataset S follows the distribution
D. In PAC-Bayes learning, we construct a data-driven posterior distri-
bution ρ ∈ M(H) with respect to a prior distribution π.

For all i, we denote by Ei[·] the conditional expectation E[ · | Fi]. In
this work, we consider data-dependent priors. A stochastic kernel is a
mapping π : ∪∞

m=1Z
m × ΣH → [0, 1] where (i) for any B ∈ ΣH, the

function S 7→ π(S,B) is measurable, (ii) for any dataset S, the function
B 7→ π(S,B) is a probability measure over H.

In what follows, we consider two different learning paradigms: batch
learning, where the dataset is directly available, and online learning,
where data streams arrive sequentially.

(i) Batch setting. We assume the dataset S to be i.i.d., so there exists
a distribution D over Z such that D = Dm. We then define, for a given
h ∈ H, the risk to be RD := Ez∼D[ℓ(h, z)] and its empirical counter-
part R̂S := 1

m

∑m
i=1 ℓ(h, zi). We aim to bound the expected generalisation

gap defined by Eh∼ρ[RD(h) − R̂S(h)]. We assume that the dataset S is
split into K disjoint sets S1, . . . , SK. We consider K stochastic kernels
π1, . . . ,πK such that for any S, the distribution πi(S, .) does not depend
on Si.

(ii) Online setting. We adapt the online PAC-Bayes framework of
[BG-Conf17]. We assume that we have access to a stream of data S =

(zi)i=1,...,m, arriving sequentially, with no assumption on D. In online
PAC-Bayes, the goal is to define a posterior sequence (ρi)i⩾1 from a
prior sequence (πi)i⩾1, which can be data-dependent. We define an
online predictive sequence (πi)i=1···m satisfying: (i) for all i and dataset S,
the distribution πi(S, .) is Fi−1 measurable and (ii) there exists π0 such
that for all i ⩾ 1, we have πi(S, .) ≫ π0. This last condition covers, in
particular, the case where H is an Euclidean space and for any i, the
distribution πi,S is a Dirac mass. All of those measures are uniformly
continuous with respect to any Gaussian distribution.
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wasserstein distance . We focus on the Wasserstein distance of
order 1 (Earth Mover’s distance) introduced by Kantorovitch, 1960 in
the optimal transport literature. Given a distance d : A×A → R and a
Polish space (A,d), for any probability measures α and BQ on A, the
Wasserstein distance is defined by

W(α,BQ) := inf
γ∈Γ(α,BQ)

{
E

(a,b)∼γ
d(a,b)

}
,

where Γ(α,BQ) is the set of joint probability measures γ ∈ M(A2) such
that the marginals are α and BQ. The Wasserstein distance aims to
find the probability measure γ ∈ M(A2) minimising the expected cost
E(a,b)∼γ d(a,b). We refer the reader to Villani (2009) and Peyré and
Cuturi (2019) for an introduction to optimal transport.

We present novel high-probability PAC-Bayesian bounds involving
Wasserstein distances instead of the classical Kullback-Leibler diver-
gence. Our bounds hold for heavy-tailed losses (instead of classical
subgaussian and subexponential assumptions), extending the remits
of Amit et al., 2022, Theorem 11. We exploit the supermartingale tool-
box, recently introduced in PAC-Bayes framework by [BG-Journal21];
Chugg et al., 2023; Jang et al., 2023, to derive bounds for both batch
learning and online learning. Here is one of our main results, holding
for heavy-tailed non-negative losses.

Theorem 3.2. We assume our loss ℓ to be non-negative and L-Lipschitz. We
also assume that, for any 1 ⩽ i ⩽ K, for any datasetS, we have

E
h∼πi(.,S),z∼D

[
ℓ(h, z)2

]
⩽ 1,

bounded order 2 moments for priors. Then, for any δ ∈ (0, 1], with probability
at least 1−δ over the sample S, the following holds for the distributions πi,S :=

πi(S, .) and for any ρ ∈ M(H):

E
h∼ρ

[
RD(h) − R̂S(h)

]
⩽

K∑
i=1

2|Si|L

m
W(ρ,πi,S) +

K∑
i=1

√
2|Si| ln K

δ

m2
,

where πi,S does not depend on Si.

Note that when the loss function takes values in [0, 1], an alternative
strategy allows tightening the last term of the bound by a factor 1

2 .
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towards new pac-bayesian algorithms . From that bound,
we derive a new PAC-Bayesian algorithm for Lipschitz non-negative
losses:

arg min
ρ∈M(H)

E
h∼ρ

[
R̂S(h)

]
+

K∑
i=1

2|Si|L

m
W(ρ,πi,S).

This uses Wasserstein distances as regularisers and allows the use of
multiple priors.

Another key result from this paper is a bound for the online learning
setting.

Theorem 3.3. We assume our loss ℓ to be non-negative and L-Lipschitz. We
also assume that, for any i, S, Eh∼πi(.,S)

[
Ei−1[ℓ(h, zi)2]

]
⩽ 1 (bounded

conditional order 2 moments for priors). Then, for any δ ∈ (0, 1], with
probability at least 1 − δ over the sample S, any online predictive sequence
(used as priors) (πi)i⩾1, we have with probability at least 1−δ over the sample
S ∼ D, the following, holding for the data-dependent measures πi,S := πi(S, .)
and any posterior sequence (ρi)i⩾1:

1

m

m∑
i=1

E
hi∼ρi

[
E[ℓ(hi, zi) | Fi−1] − ℓ(hi, zi)

]

⩽
2L

m

m∑
i=1

W(ρi,πi,S) +

√
2 ln

(
1
δ

)
m

.
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4
G E N E R A L I S AT I O N I N N E W F R A M E W O R K S

Outline

In this chapter, we illustrate how PAC-Bayes allows for generalisation
insights in models or frameworks in which no previous results were
available.

PAC-Bayesian learning was long confined to a very restrictive statisti-
cal framework (bounded loss function, i.i.d. data, supervised learning,
etc.) that did not match the reality of contemporary learning problems
(where data is noisy, incomplete, online, heavy-tailed, unsupervised or
weakly supervised, etc.), which hindered its adoption outside the (rel-
atively small) community of theoretical machine learning researchers.
The gap between theory and practice is largely explained by the math-
ematical arguments deployed: for example, one of the essential mech-
anisms of PAC-Bayesian generalisation bound proofs is a concentra-
tion argument of the empirical error 1

n

∑n
i=1 ℓ(Yi,ϕ(Xi)) towards its

expectation EX,Yℓ(Y,ϕ(X)). However, this argument requires that the
learning sample {(Xi, Yi)}ni=1 be indeed i.i.d. It is possible, however, to
circumvent this limitation, as we did in [BG-Journal6] with a different
proof based on Hölder’s inequality. A significant part of my efforts has
been devoted to extending the PAC-Bayesian theory in all directions,
which can be broadly summarised into four major categories:
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Rate Improving the rate of convergence or the potential constants ap-
pearing in the bound,

Div. Replacing the Kullback-Leibler divergence with other divergence
measures,

Ass. Relaxing the assumptions necessary without altering the terms
of the bound,

New Demonstrating generalisation bounds for new learning frame-
works.

I illustrate these four types of contributions with four articles [BG-
Journal6]; [BG-Journal21]; [BG-Conf3]; [BG-Conf8] among my related
works [BG-Conf3]; [BG-Conf21]; [BG-Preprint7]; [BG-Preprint10]; [BG-
Conf23]; [BG-Preprint16]; [BG-Journal6]; [BG-Journal14]; [BG-Journal15];
[BG-Journal21]; [BG-Journal9]; [BG-Journal7]; [BG-Journal2]; [BG-Conf17];
[BG-Conf24]; [BG-Preprint2]; [BG-Preprint1]; [BG-Conf3]; [BG-Preprint14];
[BG-Preprint5]; [BG-Conf7]; [BG-Conf13]; [BG-Preprint6]; [BG-Journal20];
[BG-Conf16]; [BG-Conf8]; [BG-Journal5]; [BG-Conf4].

Rate. In [BG-Conf3], we demonstrate that it is possible to achieve fast
rates in O(n) (rather than O(

√
n)), which is a significant advancement

for attesting to the generalisation of algorithms when large samples
are available. The central argument is a new concentration inequality
(which we named unexpected Bernstein).

Div. In [BG-Journal6], we proposed the first PAC-Bayes generalisa-
tion bound with f-divergences, a class significantly broader than what
was previously used. The vast majority of available bounds use the
Kullback-Leibler divergence, which is a specific case of f-divergence
(with the choice f : x 7→ x log x).

Ass. In [BG-Journal21], we demonstrate that it is possible to drop
the assumption that the loss function is bounded (as assumed in the
vast majority of the literature, even though a simple and popular loss
such as the squared loss does not satisfy this). The key idea is a new
flavour of Markov inequality, applied to supermartingales.

New. In [BG-Conf8], we demonstrate the first PAC-Bayes generalisa-
tion bounds for contrastive learning, which is widely used in industry
but for which no theoretical generalisation result existed before 2019.

We now briefly illustrate our contributions by sketching the main
results from [BG-Conf8] (UAI 2020) and [BG-Conf16] (AISTATS 2022).
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4.1 contrastive unsupervised representation learning

The paper [BG-Conf8] is a joint work with Pascal Germain and Kento
Nozawa, on contrastive unsupervised representation learning (CURL).

Contrastive unsupervised representation learning (CURL) is the state-
of-the-art technique to learn representations (as a set of features) from
unlabelled data. While CURL has collected several empirical successes
recently, theoretical understanding of its performance was still missing.
Arora et al. (2019) provided the first generalisation bounds for CURL,
relying on a Rademacher complexity. We extend their framework to
the flexible PAC-Bayes setting, allowing us to deal with the non-iid set-
ting. We present PAC-Bayesian generalisation bounds for CURL, which
are then used to derive a new representation learning algorithm. Nu-
merical experiments on real-life datasets illustrate that our algorithm
achieves competitive accuracy, and yields non-vacuous generalisation
bounds.

Arora et al. (2019) introduced the first theoretical results on CURL,
using Rademacher complexity. In a nutshell, for any predictor f and f̂

an ERM, w.p. ⩾ 1− δ,

Losssup(f̂) ⩽ C1Lossuns(f) +C2

(
Rad
m

+

√
log(1/δ)

m

)
.

We proposed a PAC-Bayes generalisation which improves on their re-
sults by removing the iid assumption, and by deriving a SOTA learning
algorithm. For any prior P, any posterior Q, any λ > 0, w.p. ⩾ 1− δ

Losssup(Q) ⩽ C

1− exp
(
−λL̂ossuns(Q) −

KL(Q,P)+log(1/δ)
m

)
1− exp(−λ)

 .

Unsupervised representation learning (Bengio et al., 2013) aims at ex-
tracting features representation from an unlabelled dataset for down-
stream tasks such as classification and clustering (see Mikolov et al.,
2013; Noroozi and Favaro, 2016; Zhang et al., 2016; Caron et al., 2018;
Devlin et al., 2019). An unsupervised representation learning model is
typically learnt by solving a pretext task without supervised informa-
tion. Trained model work as a feature extractor for supervised tasks.

In unsupervised representation learning, contrastive loss is a widely
used objective function class. Contrastive loss uses two types of data
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pair, namely, similar pair and dissimilar pair. Their similarity is de-
fined without label information of a supervised task. For example, in
word representation learning, Mikolov et al. (2013) define a similar pair
as co-occurrence words in the same context, while dissimilar pairs are
randomly sampled from a fixed distribution. Intuitively, by minimising
a contrastive loss, similar data samples are mapped to similar repre-
sentations in feature space in terms of some underlying metric (as the
inner product), and dissimilar samples are not mapped to similar rep-
resentations.

Contrastive unsupervised representation learning improves the per-
formance of supervised models in practice, and has attracted a lot of
research interest lately (see Chen et al., 2020, and references therein),
although usage is still quite far ahead of theoretical understanding.
Arora et al. (2019) introduced a theoretical framework for contrastive
unsupervised representation learning and derived the first generalisa-
tion bounds for CURL. In parallel, PAC-Bayes is emerging as a princi-
pled framework to understand and quantify the generalisation ability
of many machine learning algorithms.

our contributions . We extend the framework introduced by Arora
et al. (2019), by adopting a PAC-Bayes approach to contrastive unsuper-
vised representation learning. We derive the first PAC-Bayes generali-
sation bounds for CURL, both in iid and non-iid settings. Our bounds
are then used to derive new CURL algorithms, for which we provide
a complete implementation. The paper closes with numerical experi-
ments on two real-life datasets (CIFAR-100 and AUSLAN) showing that
our bounds are non-vacuous in the iid setting.

Inputs are denoted x ∈ X = Rd0 , and outputs are denoted y ∈ Y,
where Y is a discrete and finite set. The representation is learnt from a
(large) unlabelled dataset U = {zi}mi=1, where zi = (xi, x+i , x−i1, . . . , x−ik)
is a tuple of k+2 elements; xi being similar to x+i and dissimilar to every
element of the negative sample set {x−ij}

k
j=1. The predictor is learnt from

a labelled dataset S = {(xi,yi)}
n
i=1.

In the following, we present the contrastive framework proposed by
Arora et al. (2019) in a simplified scenario in order to highlight the key
ideas, where the supervised prediction task is binary and the negative
sample sets for unsupervised representation learning contain one ele-
ment. Thus, we choose the label set to be Y = {−1, 1}, and the unsuper-
vised set U contains triplets zi = (xi, x+i , x−i ). The extension to a more
generic setting (for |Y| > 2 and k > 1) bears no particular difficulty. It
is important to note at this stage that both U and S are assumed to be
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iid (independent, identically distributed) collections, as also assumed
by Arora et al. (2019).

Latent classes and data distributions. The main assumption is the
existence of a set of latent classes C. Let us denote by ρ a probability
distribution over C. Moreover, with each class c ∈ C, comes a class dis-
tribution Dc over the input space X. A similar pair (x, x+) is such that
both x and x+ are generated by the same class distribution. Note that
an input x possibly belongs to multiple classes: take the example of x
being an image and C a set of latent classes including “the image de-
picts a dog" and “the image depicts a cat" (both classes are not mutually
exclusive).

Definition 4.1. Let ρ2 be a shorthand for the joint distribution (ρ, ρ). We
refer to the unsupervised data distribution U as the process that generates
an unlabelled sample z = (x, x+, x−) according to the following scheme:
1. Draw two latent classes (c+, c−) ∼ ρ2 ;
2. Draw two similar samples (x, x+) ∼ (Dc+)2 ;
3. Draw a negative sample x− ∼ Dc− .

The labelled sample S is obtained by fixing two classes c± = {c−, c+} ∈
C2 (from now on, the shorthand notation c± is used to refer to a pair
of latent classes). Each class is then mapped on a label of Y. We fix
yc− = −1 and yc+ = 1; Thus we can write Y = {yc− ,yc+} as an ordered
set. The label is obtained from the latent class distribution restricted to
two values ρc± :

ρc±(c−) =
ρ(c−)

ρ(c−)+ρ(c+)
, ρc±(c+) =

ρ(c+)

ρ(c−)+ρ(c+)
.

Definition 4.2. We refer to the supervised data distribution S as the pro-
cess that generates a labelled sample (x,y) according to the following scheme:
1. Draw a class c ∼ ρc± and set label y = yc ;
2. Draw a sample x ∼ Dc .

Loss function. The learning process is divided in two sequential
steps, the unsupervised and supervised steps. In order to relate these
two steps, the key is to express them in terms of a common convex loss
function ℓ : R→R+. Typical choices are

ℓlog(v) = log2(1+ e−v) , (logistic loss)

ℓhinge(v) = max{0, 1−v} , (hinge loss)

where the loss argument v expresses a notion of margin.
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In the first step, an unsupervised representation learning algorithm
produces a feature map f : X → Rd. The contrastive loss associated with
f is defined as

Lun(f) = E
(c+,c−)∼ρ2

E
(x,x+)∼D2

c+

x−∼Dc−

ℓ
(

f(x)·
[
f(x+)−f(x−)

])

= E
(x,x+,x−)∼U

ℓ
(

f(x)·
[
f(x+)−f(x−)

])
.

More precisely, from the unsupervised training dataset

U = {(xi, x+i , x−i )}
m
i=1 ∼ Um ,

we are interested in learning the feature map f that minimises the fol-
lowing empirical contrastive loss:

L̂un(f) =
1

m

m∑
i=1

ℓ
(

f(xi) ·
[
f(x+i ) − f(x−i )

])
. (4.1)

In the second step, a supervised learning algorithm is given the mapped
dataset Ŝ= {(x̂i,yi)}

n
i=1, with x̂i= f(xi), and returns a predictor g :

Rd → R. For a fixed pair c± = {c−, c+}, the predicted label on an
input x is then obtained from ŷ = sgn[g(x̂)] (recall that Y = {−1, 1}),
and we aim to minimise the supervised loss

Lsup(g ◦ f) = E
c∼ρc±

E
x∼Dc

ℓ
(
yc g(f(x))

)
= E

(x,y)∼S
ℓ
(
yg(f(x))

)
.

Given a labelled dataset S ∼ Sn, the empirical counterpart of the above
supervised loss is

L̂sup(g ◦ f) =
1

n

n∑
i=1

ℓ
(
yi g(f(xi))

)
.

Mean classifier. Following Arora et al. (2019), we study the mean
classifier defined by the linear function

gc±(x̂) = wc± · x̂ ,

where wc± = µµµc+ − µµµc− , and µµµc = Ex∼Dc
f(x). Then, the supervised

average loss of the mean classifier is the expected loss on a dataset whose
pair of labels is sampled from the latent class distribution ρ.

Lµsup(f) = E
c±∼ρ2

w/o

Lsup(gc± ◦ f) , (4.2)
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with ρ2w/o being a shorthand notation for the sampling without replace-
ment of two classes among C. Indeed, we want positive and negative
samples that are generated by distinct latent class distributions, i. e.,
c− ̸= c+.

A major contribution of the framework introduced by Arora et al.
(2019) is that it rigorously links the unsupervised representation learn-
ing task and the subsequent prediction task: it provides generalisation
guarantees on the supervised average loss of Equation (4.2) in terms of
the empirical contrastive loss in Equation (4.1).

Theorem 4.1 (Arora et al., 2019, Theorem 4.1). Let B ∈ R+ be such that
∥f(·)∥ ⩽ B, with probability 1− δ over training samples U ∼ Um, ∀f∈F

Lµsup(̂f) ⩽
1

1−τ
(Lun(f) − τ) +

1

1−τ
O

(
B

RU(F)
m +B2

√
ln 1

δ

m

)
,

where f̂ = arg min
f∈F

L̂un(f) .

The bound focuses on a class of feature map functions F through its
empirical Rademacher complexity on a training dataset U, defined by

RU(F) = E
σσσ∼{±1}3dm

(
sup
f∈F

[
σσσ · f|U

])
,

where f|U = vec({f(xi), f(x+i ), f(x−i )}
m
i=1) ∈ R3dm is the concatenation

of all feature mapping given by f on U, and σσσ∼{±1}3dm denotes the uni-
formly sampled Rademacher variables over that “representation” space.
We proved the following PAC-Bayesian doppelgänger of that result.

Theorem 4.2. Let B ∈ R+ such that ∥f(·)∥ ⩽ B for all f ∈ F. Given λ > 0

and a prior P over F, with probability at least 1 − δ over training samples
U ∼ Um, ∀Q over F,

Lµsup(Q) ⩽
1

1−τ

(
Bℓ

1− exp
(
− λ

Bℓ
L̂un(Q) −

KL(Q∥P)+ln 1
δ

m

)
1− exp(−λ)

− τ

)
.

An interesting byproduct of Arora et al. (2019)’s approach is that the
proof of the main bound (Theorem 4.1) is modular: we mean that in
the proof of Theorem 4.2, instead of plugging in Catoni’s bound, we
can use any relevant bound. We therefore leverage the work of Alquier
and Guedj (2018) who proved a PAC-Bayes generalisation bound which
no longer needs to assume that data are iid, and even holds when the
data-generating distribution is heavy-tailed. We can therefore cast our
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results onto the non-iid setting. We believe removing the iid assump-
tion is especially relevant for contrastive unsupervised learning, as we
deal with triplets of data points governed by a relational causal link
(similar and dissimilar examples). In fact, several contrastive represen-
tation learning algorithms violate the iid assumption (Goroshin et al.,
2015; Logeswaran and Lee, 2018).

Alquier and Guedj (2018)’s framework generalises the Kullback-Leibler
divergence in the PAC-Bayes bound with the class of f-divergences (see
Csiszár and Shields, 2004, for an introduction). Given a convex function
f such that f(1) = 0, the f-divergence between two probability distribu-
tions is given by

Df(P∥Q) = E
h∼Q

f

(
P(h)

Q(h)

)
.

Moreover, PAC-Bayes provides bounds on the expected loss of the pre-
dictors under the distribution Q. We now present the classical super-
vised setup, where the zero-one loss is used.1 We refer to this loss as
the classification risk, denoted by r(y, ŷ) = 1[y ŷ < 0]. Given a data-
generating distribution S on X× Y, the expected Q-risk is

R(Q) = E
(x,y)∼S

E
h∼Q

r(y,h(x)) ,

and the empirical counterpart, i. e., the Q-weighted empirical risk on a
training set S = {(xi,yi)}

n
i=1 ∼ Sn, is given by

R̂(Q) =
1

n

n∑
i=1

E
h∼Q

r(yi,h(xi)) .

Theorem 4.3. Given p > 1,q = p
p−1 and a prior P over F, with probability

at least 1− δ,∀Q over F,

Lµsup(Q) ⩽
1

1− τ

(
L̂un(Q) − τ

)
+

1

1− τ

(
Mq

δ

) 1
q (

Dϕp−1(Q∥P) + 1
) 1

p ,

where Mq = Ef∼P EU∼Um(|Lun(f) − L̂un(f)|q) and ϕp(x)=xp.

Up to our knowledge, Theorem 4.3 is the first generalisation bound
for contrastive unsupervised representation learning that holds with-
out the iid assumption, therefore extending the framework introduced
by Arora et al. (2019) in a non-trivial and promising direction. Note
that Theorem 4.3 does not require iid assumption for both unsuper-
vised and supervised steps.

1 Classical PAC-Bayes analyses consider the supervised learning setting, but non-
supervised learning approaches exist (e. g., Seldin and Tishby, 2010; Higgs and Shawe-
Taylor, 2010; Germain et al., 2013).
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4.2 reconstruction guarantees for vaes

[BG-Conf16] is a joint work, led by Badr-Eddine Chérief-Abdellatif,
with Yuyang Shi and Arnaud Doucet.

Despite its wide use and empirical successes, the theoretical under-
standing and study of the behaviour and performance of the varia-
tional autoencoder (VAE) have only emerged in the past few years. We
contribute to this recent line of work by analysing the VAE’s recon-
struction ability for unseen test data, leveraging arguments from the
PAC-Bayes theory. We provide generalisation bounds on the theoretical
reconstruction error, and provide insights on the regularisation effect
of VAE objectives. We illustrate our theoretical results with supporting
experiments on classical benchmark datasets.

Since its introduction by Kingma and Welling, 2014, the Variational
AutoEncoder (VAE) has attracted considerable interest and is now widely
used for learning low dimensional representations of high dimensional
complex data, such as images. The VAE provides a probabilistic view
on the autoencoder, a structure which trains an encoder that maps a
high dimensional input to a low dimensional latent code, which is then
reconstructed using a decoder. The probabilistic encoder qϕ(z|x) is a
distribution over the possible values of the code z given a datapoint x,
while the probabilistic decoder pθ(x|z) is a distribution over the possi-
ble corresponding values of x given the code z.

As any autoencoder, the VAE offers a powerful framework for learn-
ing compressed representations by encoding the information required
to reconstruct the original signal accurately. Beyond this simple coding
theory perspective, the VAE is more generally presented as a deep gen-
erative model. Assuming that the latent code z is distributed according
to a prior p(z) (typically an isotropic Gaussian distribution) and that
the decoder is defined via a likelihood pθ(x|z) parameterised by a neu-
ral network, the encoder qϕ(z|x) is then represented as a variational
approximation of the posterior pθ(z|x) which is also parameterised by
a neural network. Both the encoder and the decoder networks weights
are jointly learnt by minimising a variational objective:

−Eqϕ(z|x) [logpθ(x|z)]︸ ︷︷ ︸
reconstruction loss

+KL(qϕ(z|x)∥p(z))︸ ︷︷ ︸
rate

averaged over the dataset, where the first term is a reconstruction loss
and the second term is the Kullback–Leibler (KL) divergence between
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the encoder and the prior p(z). This can alternatively be seen as max-
imising the celebrated Evidence Lower Bound (ELBO) on the (intractable)
log-evidence of this latent variable model. In information-theoretic words,
the reconstruction loss is the distortion measured through the encoder-
decoder channel, while the KL term is called the rate, an upper bound
on the mutual information between the input and the code (a quantity
which is usually interpreted as a regulariser controlling the degree of
compression through the autoencoder). The celebrated β-VAE variant
(Higgins et al., 2017) corresponds to the case where the KL rate has a
multiplicative factor β in the variational objective.

Related work. There is a growing body of works aiming to under-
stand the empirical success of the VAE, and a number of reasons have
been put forward to explain its apparent good generalisation proper-
ties. A large part of the literature has addressed generalisation through
the lens of generative modeling, by measuring the sampling ability of
the VAE and of its variants using either the log-marginal likelihood, the
ELBO, or relative quantitative metrics such as FID (Heusel et al., 2017;
Kumar and Poole, 2020) and precision and recall scores (Sajjadi et al.,
2018). Rate-distortion curves rather than the log-likelihood have also
been proposed to obtain more information about the model (Alemi
et al., 2018; Huang et al., 2020). Probably the most remarkable phe-
nomenon is the now widely acknowledged fact that an infinite capac-
ity VAE memorises the training data and interpolates: in other words
the VAE predicts novel data points between given training samples by
decoding a convex combination of the latent codes (Alemi et al., 2018;
Rezende and Viola, 2018; Shu et al., 2018). In light of these findings, Shu
et al., 2018 investigated the impact of the encoder capacity on the mem-
orisation property, while Zhao et al., 2018 focused on the question of
sampling out-of-domain data from the learnt representation. Another
interesting line of research lies in evaluating the quality of the represen-
tation via different semantic notions such as disentanglement (achiev-
ing interpretability via the decomposability of the latent representation,
with the hope to ultimately generalise to new combinations of factors,
as explored by Higgins et al., 2017; Chen et al., 2018; Kim and Mnih,
2018; Mathieu et al., 2019; Esmaeili et al., 2019; Locatello et al., 2019)
or robustness (by exploring metrics that capture some effects that rare
events from multiple generative factors can have on feature encodings,
see Suter et al., 2019). While this is out of scope of the present paper,
we also acknowledge recent works on other generative models, such
as Generative Adversarial Networks (Biau et al., 2021; Schreuder et al.,
2021).
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Nevertheless, the notion of generalisation is intrinsically subjective.
Indeed, a given VAE objective can lead to good reconstruction on un-
seen test data while being poor for sampling, and can conversely lead
to poor reconstruction while being able to generate realistic images.
Furthermore, while the ELBO objective naturally defines a proper gen-
erative model as a lower bound on the log-marginal likelihood, this
is no longer true for the β-VAE when β < 1. Hence, the approach
consisting in evaluating any VAE objective from the sampling perspec-
tive is not always appropriate. We do not focus here on the generative
abilities of the VAE. Similarly, although disentanglement potentially in-
duces generalisation, we are not focusing on that notion per se.

In this paper, we study the VAE from a reconstruction perspective:
we consider the VAE as a model that learns a lossy encoder and de-
coder, with the belief that a model generalising well should capture a
meaningful representation of the data. To better understand the gen-
eralisation ability of the VAE in terms of reconstruction, Bozkurt et
al., 2021 have investigated the regularisation properties of the VAE ob-
jective. Somewhat counter-intuitively, they demonstrated through ex-
tensive experiments that the KL term neither actually acts as a regu-
lariser nor improves generalisation when focusing on reconstruction.
They also showed that reducing β always decreases the generalisation
gap when test data deviates substantially from the training data in
pixel space. Their work differentiates between test data that can be re-
constructed easily by taking the most similar memorised training data
points, and more complicated test data with out-of-domain samples.
Hence, the influence of the KL term on the generalisation ability of the
VAE is not the same depending on the difficulty of the generalisation
task, although the impact of the KL is always monotonic in β. This
sheds additional light on the observations made by Alemi et al., 2018

and Rezende and Viola, 2018 which were conducted on training data
only. This somewhat surprising behaviour calls for a further study of
the regularisation effect of VAE objectives – a contribution of our paper.

Our approach. A natural way to study regularisation is to derive sta-
tistical guarantees to quantify the risk of overfitting. We address this by
computing generalisation bounds on the reconstruction loss using PAC-
Bayes theory. PAC-Bayes has been extensively and successfully used in
many settings in machine learning and statistics – however, to the best
of our knowledge, it has never been leveraged in the VAE literature.
The inference model represented by the encoder is a stochastic func-
tion of the inputs that is learnt using amortised inference to improve
computational efficiency for huge datasets.
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We first formulate PAC-Bayes bounds for the VAE structure. We then
show that minimising directly the PAC-Bayes bound over the recon-
struction error for amortised variational inference not only provides
non-vacuous generalisation bounds, but also significantly decreases the
generalisation gap between the test and the training reconstruction er-
rors. The idea of using PAC-Bayes to evaluate the generalisation abil-
ity of autoencoders has appeared in the past few years. Epstein and
Meir, 2019 have indeed recently adapted margin- and norm-based re-
sults for deep neural networks (Bartlett et al., 2017a; Neyshabur et al.,
2018b; Arora et al., 2018) to obtain a generalisation bound for deter-
ministic autoencoders. However, there are two substantial differences
between their work and ours. First, their bound on the generalisation
gap can only be obtained up to a large constant independent of the
network parameters, the sample size and the margin, while our bound
can be computed and used as an objective for designing an alternative
learning algorithm. Second, their bound is deterministic. This is due to
the fact that PAC-Bayes inequalities only appear as an artefact in their
proofs, in which the networks parameters are artificially perturbed us-
ing a Gaussian noise. The deterministic generalisation gap is then con-
trolled by the means of the perturbed network parameters at the price
of a looser inequality involving different margin levels. In contrast, our
bound is a genuine PAC-Bayes bound on the probabilistic structure of
the VAE whose stochasticity is used as a way to inject noise during the
learning phase.

Summary of our contributions. Hence, the primary motivation for
this work is to complement the findings on the role of the rate as a
regulariser Bozkurt et al., 2021 by providing the first theoretical results
on the generalisation ability of the VAE and the regularising property
of the KL in terms of reconstruction. We choose to derive statistical
guarantees by computing generalisation bounds on the reconstruction
loss. Leveraging PAC-Bayes theory, we provide bounds that can not
only be computed empirically, but can also be used as new learning
objectives with good generalisation properties and strong theoretical
guarantees. Consequently, our contribution is two-fold: i) we formulate
a derandomised PAC-Bayes generalisation bound for the VAE struc-
ture which is the first such bound in the VAE literature; ii) we use
a non-derandomised variant of this bound to propose a novel PAC-
Bayes objective for the VAE structure that will generalise well while
achieving tight risk certificates. We provide empirical evidence on real-
world datasets, evaluate the generalisation ability of both the β-VAE
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(including the original VAE with β = 1) and PAC-Bayes objectives, and
compute generalisation bounds for these strategies.

We consider a dataset S = {x1,. . . ,xn} of independent copies of a
random variable x ∈ X ⊂ RD sampled from an unknown probability
distribution D, with D a (potentially large) positive integer. We assume
a generative model pθ(x, z) involving a latent random variable z in a
lower dimensional space Z ⊂ Rd: the model is composed of a prior p(z)
(e.g. a standard Gaussian distribution), and of a conditional likelihood
pθ(x|z) from a parametric family indexed by θ ∈ Θ (e.g. the weights of
a neural network). The marginal likelihood over the observed variables,
given by pθ(x) =

∫
pθ(x|z)p(z)dz, is typically intractable.

The VAE (Kingma and Welling, 2014) adopts a variational approach
to turn the intractable posterior inference and learning problem into
a tractable one, which results in the maximisation of a lower bound
on the log-evidence (ELBO). The encoder and the decoder, respectively
parameterised by ϕ and θ, attempt to learn: (i) a variational distribu-
tion qϕ(z|x) that approximates the intractable posterior distribution
pθ(z|x), and (ii) the conditional likelihood pθ(x|z) that approximates
the data generating distribution. We recall the variational objective min-
imised by the β-VAE (Higgins et al., 2017), an extension of the VAE that
reweights the KL term in the variational objective:

Lβ(ϕ, θ) =
n∑

i=1

−Eqϕ(zi|xi) [logpθ(xi|zi)]

+β ·
n∑

i=1

KL(qϕ(z|xi)∥p(z)).

The standard VAE framework corresponds to β = 1, in which case the
variational objective can be rewritten as the (opposite of the) ELBO:

L1(ϕ, θ) =
n∑

i=1

− logpθ(xi) +
n∑

i=1

KL(qϕ(z|xi)∥pθ(z|xi))

⩾
n∑

i=1

− logpθ(xi).

The prior over the latent variables is typically set to be the isotropic
multivariate Gaussian pθ(z) = N(0, Id), while the conditional likeli-
hood pθ(x|z) is generally defined as a Gaussian (in case of real-valued
data) or Bernoulli (in case of binary data) whose distribution parame-
ters are computed from z using a neural network. For binary data x for
instance, the shape of the variational and likelihood distributions can
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be taken as a Gaussian latent distribution and a factorised Bernoulli
observation likelihood:

qϕ(z|x) = N
(
z;µϕ(x), diag(σ2

ϕ(z))
)

, (4.3)

logpθ(x|z) =
D∑
j=1

{xj logωθ(z)j + (1− xj) log(1−ωθ(z)j)}, (4.4)

where both the encoder distribution parameters (µϕ(x), logσϕ(x)) =

NNϕ(x) and the decoder distribution parameter ωθ(z) = NNθ(z) are
outputs of neural networks, with 0 < ωθ(z)j < 1 for any j, which can
be obtained for example via a sigmoid nonlinearity as the last layer of
the neural network. Here, ϕ and θ are the weights of the corresponding
neural networks.

Let us stress that we focus on the generalisation properties of the
VAE and its variants in terms of reconstruction, and mainly interpret
the structure as a model for learning representations using an encoder
and a decoder. Note that we recover the case of a deterministic au-
toencoder in the limit of infinite capacity when β = 0 as the recon-
struction loss alone is minimised when the encoder qϕ(z|x) is a Dirac
mass at arg maxz logpθ(x|z) and when θ minimises the corresponding
log-likelihood. This partly explains the fact that the KL term is often in-
terpreted as a regulariser that smoothes the representation and makes
the VAE less prone to overfitting.

We adopt in this section a PAC-Bayesian approach on the VAE struc-
ture, both for computing generalisation bounds and for learning the
related learning objective. The term pseudo-VAE refers to the structure
learnt by any objective, whether that of the exact VAE, that of a β-VAE
or that of a PAC-Bayes objective which we present in this section.

We consider a dataset S = {x1,. . . ,xn} composed of binary data, typ-
ically images, from an unknown distribution D. We use a Gaussian
encoder and a standard Bernoulli conditional likelihood in the decoder
as detailed in (4.3) and (4.4). Here, ω = (ϕ, θ), and the reconstruc-
tion loss ℓ(ϕ, θ, x) is obtained via rescaling −Eqϕ(z|x) [logpθ(x|z)] where
pθ(x|z) is a truncated version of the conditional likelihood, so that
the loss is bounded with range [0, 1]. Then, the theoretical R(ϕ, θ) =

Ex∼D[ℓ(ϕ, θ, x)] and empirical R̂S(ϕ, θ) = 1
n

∑n
i=1 ℓ(ϕ, θ, xi) reconstruc-

tion losses measure the quality of the reconstruction of any variant of
the VAE whose encoder and decoder weights are respectively ϕ and θ.
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We now present our main results, which are generalisation bounds
on the reconstruction gap. The first one, dedicated to designing the
learning objective, is a bound on average over the VAE parameters,
while the second one is a derandomised PAC-Bayes bound used to
evaluate the upper bound. The first bound is given in the following
theorem.

Theorem 4.4. Let δ ∈ (0, 1), (ϕ0, θ0) and σ2
θ > 0, σ2

ϕ > 0. With probability
at least 1− δ over {x1,...,xn} ∼ Dn, we have for any (ϕ, θ), for any (s2ϕ, s2θ):

EN(ϕ,s2ϕI),N(θ,s2θI)
[R(ϕ̃, θ̃)] ⩽ EN(ϕ,s2ϕI),N(θ,s2θI)

[R̂S(ϕ̃, θ̃)]

+

√√√√√∥ϕ−ϕ0∥22
4σ2

ϕn
+

Nϕ

(
s2ϕ
σ2
ϕ

+ log(
σ2
ϕ

s2ϕ
) − 1

)
4n

+
log(2

√
n

δ )

2n

+

√√√√∥θ− θ0∥22
4σ2

θn
+

Nθ

(
s2θ
σ2
θ

+ log(σ
2
θ

s2θ
) − 1

)
4n

+
log(2

√
n

δ )

2n
,

where Nϕ and Nθ are respectively the encoder and decoder neural networks
size.

The risks R(ϕ̃, θ̃) and R̂S(ϕ̃, θ̃) in the inequality are averaged over the
random parameters ϕ̃ and θ̃ following Gaussians centered at the VAE
parameters ϕ, θ with respective variances s2ϕ, s2θ. The bound serves as
a learning objective for both the VAE parameters ϕ, θ and the corre-
sponding variance levels s2ϕ, s2θ, and contains separate terms involving
each of them.

We present now a derandomised bound, which is a key point in order
to evaluate the performance of the learnt strategy itself, in contrast to
the previous standard averaged PAC-Bayes bound.

Theorem 4.5. Let δ ∈ (0, 1), (ϕ0, θ0) and σ2
θ > 0, σ2

ϕ > 0. Then with
probability at least 1− δ over both S = {x1,...,xn} ∼ Dn, and εϕ ∼ N(0,σ2

ϕI),
εθ ∼ N(0,σ2

θI):

kl
(
R(ϕ+ εϕ, θ+ εθ)∥R̂S(ϕ+ εϕ, θ+ εθ)

)
⩽

∥ϕ−ϕ0 + εϕ∥22 − ∥εϕ∥22
2σ2

ϕn
+

∥θ− θ0 + εθ∥22 − ∥εθ∥22
2σ2

θn

+
log(2

√
n/δ)

n
, (4.5)
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where (ϕ, θ) is the output of the algorithm minimising the bound in 4.4 given
the dataset S, and where kl is the binary Kullback-Leibler divergence

kl(q∥p) = q log
(
q

p

)
+ (1− q) log

(
1− q

1− p

)
for any q,p ∈ (0, 1).

To summarise, we considered two different bounds with two differ-
ent perspectives. Theorem 4.4 is a randomised inequality designed to
learn the noise level so that it encourages the learning process to end
in flat regions with small generalisation error, while Theorem 4.5 is a
high probability bound over the noise which is used to evaluate the
final bound for small fixed values of the noise so that the bound can
be considered as deterministic. Note that learning is no longer self-
certified, but the principles driving this approach could still lead to
good guarantees.

Our PAC-Bayes approach can be summarised as:

(i) First learn (ϕ0, θ0);

(ii) Then learn (ϕ, θ) along with (s2ϕ, s2θ). This can be done by min-
imising the bound in Theorem 4.4 using SGD on the entire dataset;

(iii) Finally evaluate the bound at (ϕ, θ). This can be done by inverting
the kl bound in Theorem 4.5.
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5
P E R S P E C T I V E S

Outline

Towards a new generalisation-centric paradigm: from generalisation to
frugal AI.

My scientific activity to date shows that my major interest in gener-
alisation in machine learning structures my vision of the field. I am
convinced that this is one of the keys to designing and deploying fu-
ture intelligent systems. This long-term goal resonates remarkably with
the emergence, beyond academic walls, of large models (termed foun-
dation models) in language over the past eighteen months—it is, how-
ever, striking to note that the most powerful models require astonish-
ing volumes of data, to train and fine-tune an also prodigious number
of parameters (this article estimates GPT-4’s parameters at over 1.8 tril-
lion). This inflationary trend will significantly concentrate the capacity
to train such models within an increasingly limited number of actors,
already excluding most academic players, hindering the accessibility of
future systems. This trend seems neither sustainable nor desirable to
me. The quest for algorithms capable of generalising well from limited
data will thus become increasingly pressing, at a time when large-scale
data acquisition (necessary for training foundation models) can prove
costly for a large part of research or industry players, and legitimate
privacy concerns limit its availability. It will become increasingly im-
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portant to design algorithms capable of learning from a fraction of the
data and/or computational power currently necessary.

I will carry on my work on generalisation and will investigate many
follow-up leads of results mentioned in this manuscript, with the group
of outstandingly talented students I am fortunate to supervise. How-
ever, I feel there is now an opportunity for not only work on generalisa-
tion for the sake of it, but to translate this knowledge towards shifting
the way we build and deploy learning algorithms.

The high-level ideas I detail here are the product of three convictions:

(a) generalisation theory (especially its PAC-Bayes component) is to-
day sufficiently mature and developed to tackle ambitious prob-
lems in machine learning,

(b) one of the major topics will not be to collect always more data,
but to learn better from less,

(c) the most advanced systems will be capable of continuous learn-
ing and flexibly evolving their representation of the world.

On top of these three scientific convictions that I have forged over my
career, I am acutely aware of the growing environmental footprint of
artificial intelligence systems, and its unsustainable nature. I will thus
aim to design learning algorithms that are more frugal, and more effi-
cient.

If I ever need an elevator pitch, here’s what I’d use

The guiding principle of my research is the quest for generalisation for
intelligent systems, that is, the ability for an artificial entity to gener-
alise notions or abstract concepts from specific examples (data), and
the long-term goal is to drastically reduce the amount of data and com-
putation necessary for generalisation, leading to frugal AI systems.

In the realm of machine learning and artificial intelligence, the quest
for algorithms that can generalize well from limited data is paramount,
especially in an era where data acquisition can be costly or privacy
concerns limit data availability. I will aim my future reseach efforts to-
wards the intersection of PAC-Bayes learning, frugal AI principles, and
the innovative design of algorithms capable of learning from a frac-
tion of data and/or computational resources. PAC-Bayes, an influential
theory that provides a statistical framework to understand the general-
ization ability of machine learning models, offers a robust foundation
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for exploring new frontiers in algorithmic efficiency and effectiveness.
By leveraging insights from PAC-Bayes, we aim to pioneer frugal AI
algorithms that not only require minimal data for training but also op-
timize computational overhead, addressing critical challenges in scala-
bility and accessibility. The envisioned algorithms have the potential to
revolutionize the landscape of AI and ML by enabling more sustainable,
inclusive, and efficient learning models, thereby broadening the appli-
cability of AI technologies across various environments constrained by
ecological imperatives.

Through fundamental advances towards stronger principles, smaller
models, and reduced data sets, my research ideas will enable tomor-
row’s best AI systems to operate on yesterday’s devices, thus offering a
remedy against obsolescence, and contribute to more frugal AI systems.

I close this manuscript by echoing the PAC-Bayes manifesto intro-
duced in Chapter 1. The previous chapters support my claim that PAC-
Bayes is to play a pivotal role in the study and promotion of generalisa-
tion, in particular for designing new frugal intelligent systems. This is
evidenced by the steady growth of scientific works submitted to arXiv
relating to PAC-Bayes depicted in Figure 5.1.

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

0

25

50

Figure 5.1: Number of submissions on arXiv whose title or abstract contains
the terms "PAC-Bayes" or "PAC-Bayesian", from 2004 to 2023.
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The PAC-Bayes Manifesto

⋄ Theory: PAC-Bayes generalization bounds are the most precise or
the only ones existing for many learning problems.

⋄ Algorithms: The *generalisation-by-design* strategy allows con-
structing *ad hoc* algorithms with the best generalization perfor-
mance.

⋄ Numerical Results: PAC-Bayes leads to numerically non-trivial
bounds (or certificates) for a wide range of problems.
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To complement the main body of this manuscript which highlights my
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contributions, supervision of students and grant management.
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(2014-2019, 280 hours). I chose not to teach between 2019 and 2022 (due
to a parental leave and the Covid-19 pandemic) and waited to be able
to come back in front of students in person.

Since 2022, I have been teaching in the master’s program (which I
helped to establish) MSc AI for sustainable development and biomedicine
and healthcare at UCL (30 hours in 2022, 30 hours in 2023). Since 2014,
I have taught the following subjects: statistical learning theory, PAC-
Bayes, computational statistics, deep learning, probabilistic modelling,
exclusively at the master’s level.

a.2 supervision of students

Since joining Inria in 2014, I have (co-)supervised 3 postdocs, 10 PhD
students (including two on industrial CIFRE contracts), 2 research en-
gineers, and 23 master’s interns. The names of the current members of
my team are underlined. For postdocs, PhD students, and engineers, I
specify the source of funding: note that for PhD students, those funded
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on the French side have three years to complete their PhDs (with little
flexibility to extend) to complete their thesis, while those funded on the
British side have four years (with some flexibility to extend). I mention
the prestigious journals and conferences where some of the work has
been published.

postdocs (3 ; 1 ongoing)

(a) Fredrik Hellström [web], since May 2023 (funded until May 2025),
with a 100% supervision share, funded by a WASP Fellowship
(a prestigious Swedish government scholarship). Fredrik and I
work on the theory of generalisation, mainly via PAC-Bayesian
theory (of which I am an expert) and information theory (of
which Fredrik is an expert). We have already written the mono-
graph [BG-Preprint15] (accepted at Foundations and Trends in
Machine Learning) and the paper [BG-Conf24] which has just
been accepted at AISTATS 2024.

(b) Valentina Zantedeschi [web], January 2021 – July 2022, with a
100% supervision share, funded by our ANR APRIORI. Valentina
and I primarily worked on the design, theoretical study, and im-
plementation of majority voting strategies in learning, with two
papers [BG-Conf11]; [BG-Conf14] published at NeurIPS 2021 and
2022. Since August 2022, Valentina is a Senior Research Scientist
at ServiceNow Research in Montreal (Canada).

(c) Florent Dewez [web], February 2019 – August 2021, with a 50%
supervision share (with Vincent Vandewalle, Inria), funded by
our European project PERF-AI. With Florent, we primarily worked
on the design and deployment of algorithms to optimise fuel con-
sumption (notably by optimising trajectory) in aeronautics using
real-time flight data, leading to savings in the order of 5% to 10%
[BG-Journal11]; [BG-Journal18]. Florent is now a Senior Data Sci-
entist at DiagRAMS Technologies, in Lille (France).

phd students (10 ; 7 ongoing)

(a) Valentin Kilian [web], since October 2023, with a 40% supervi-
sion share (with François Caron, University of Oxford), funded by
the University of Oxford. Valentin works on learning on graphs,
particularly the study of community detection algorithm proper-
ties, and the links with geometric deep learning. Viva planned for
around Autumn 2027.
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(b) Théophile Cantelobre [web], since September 2021, with a 50%
supervision share (with Alessandro Rudi, Inria), funded by my
ANR JCJC BEAGLE. Théophile works on kernel methods learn-
ing, particularly on using similarity measures to promote robust-
ness to invariants. Viva planned for the second half of 2024. Works
[BG-Preprint2]; [BG-Conf15]; [BG-Preprint13] (notable: ICML).

(c) Maxime Haddouche [web], since September 2021, with a 100%
supervision share, funded by an ENS Cachan PhD scholarship.
Maxime mainly works on PAC-Bayesian learning, on relaxing as-
sumptions, extending to the online framework and measures like
the Wasserstein distance, and also contributes to online optimi-
sation and federated learning. Viva planned for the second half
of 2024. Works [BG-Preprint11]; [BG-Preprint10]; [BG-Conf23];
[BG-Preprint12]; [BG-Preprint16]; [BG-Preprint14]; [BG-Journal15];
[BG-Preprint3]; [BG-Conf17]; [BG-Journal21] (notable: TMLR, NeurIPS
x2).

(d) Antoine Picard [web], since September 2021, with a 50% supervi-
sion share (with Roman Moscoviz, SUEZ), funded by the ANRT
and SUEZ (CIFRE thesis). Antoine works on modelling and fore-
casting of anaerobic digestion for organic compounds, via PAC-
Bayesian theory and particularly develops an online meta-learning
strategy. Viva planned for the first semester of 2025. Works [BG-
Preprint7]; [BG-Journal23].

(e) Reuben Adams [web], since September 2020, with a 90% supervi-
sion share (with John Shawe-Taylor, UCL and UNESCO), funded
by UCL CDT in Foundational AI. Reuben works on generalisa-
tion theory, mainly with PAC-Bayesian theory. Viva planned for
the first semester of 2025. Works [BG-Preprint5].

(f) Antonin Schrab [web], since September 2020, with a 50% super-
vision share (with Arthur Gretton, UCL and DeepMind), funded
by UCL CDT in Foundational AI. Antonin works on adaptive
statistical test algorithms in high dimensions. Viva planned for
the second semester of 2024. Works [BG-Journal24]; [BG-Conf18];
[BG-Conf19] (notable: NeurIPS x2, JMLR).

(g) Felix Biggs [web], since September 2019, with a 90% supervision
share (with John Shawe-Taylor, UCL and UNESCO), funded by
UCL CDT in Foundational AI. Felix works on the theory of gen-
eralisation, especially the design, analysis, and deployment of
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PAC-Bayesian strategies for deep learning. Viva planned for March
2024. Works [BG-Journal13]; [BG-Conf13]; [BG-Conf12]; [BG-Conf14];
[BG-Conf21] (notable: NeurIPS, ICML, AISTATS x2).

(h) Antoine Vendeville [web], September 2019 – October 2023, with
a 75% supervision share (with Shi Zhou, UCL), funded by UCL
CDT in Cybersecurity. Antoine worked on the analysis of infor-
mation diffusion on interaction graphs (typically social networks),
the emergence of the polarisation phenomenon, and on designing
and analysing strategies to prevent and reduce the emergence of
echo chambers. Antoine applied his work to content recommen-
dation on social networks, and to forecasting election outcomes
in the United States and France. His thesis is available here https:
//theses.hal.science/tel-04431872. Antoine is now a postdoc-
toral researcher at the MédiaLab of Sciences Po, Paris (France).
Works [BG-Conf22]; [BG-Conf20]; [BG-Journal17]; [BG-Journal26];
[BG-Conf22] (notable: Physical Review E).

(i) Arthur Leroy [web], October 2017 – December 2020, with a 33%
supervision share (with Servane Gey and Pierre Latouche, Uni-
versité Paris Descartes), funded by a doctoral contract from Uni-
versité Paris Descartes. Arthur worked on the design, analysis,
and implementation of forecasting and clustering algorithms for
time series, with a model of multi-task Gaussian processes. His
work was motivated by applications to sports performance and
early detection of future athletes: the results of his thesis were
passed on to the French Swimming Federation in view of the
Paris 2024 Olympic Games. His thesis is available here: https://
arthur-leroy.netlify.app/files/Thesis-Arthur_LEROY.pdf. Arthur
is now a postdoctoral researcher at University of Manchester, UK
under the supervision of Mauricio Alvarez. Works [BG-Journal19];
[BG-Journal22] (notable: JMLR).

(j) Le Li [web], October 2014 – November 2018, with a 50% su-
pervision share (with Sébastien Loustau, Université d’Angers),
funded by the ANRT and iAdvize (CIFRE thesis). Le worked
on the design, theoretical analysis, implementation, and deploy-
ment (for customer clustering on the iAdvize platform) of on-
line clustering algorithms, partly through PAC-Bayesian theory.
His thesis is accessible here: https://tel.archives-ouvertes.
fr/tel-01970795/. Le is a lecturer at Central China Normal Uni-
versity, China. Works [BG-Journal9]; [BG-Journal16] (notable: EJS).
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visiting phd students (4 ; 1 ongoing . i do not have any of-
ficial supervision involvement)

(a) Szilvia Ujvary [web], since October 2023 (expected to finish in
September 2024), PhD student at University of Cambridge (super-
vised by Ferenc Huszár), visiting to work on sampling methods
for algorithms inspired by PAC-Bayes bounds.

(b) Ludovic Arnould [web], May 2022 – July 2022, PhD student at
Sorbonne Université (supervised by Claire Boyer and Erwan Scor-
net), visiting to work on training neural networks via PAC-Bayes
bounds.

(c) Eugenio Clerico [web], April 2022 – July 2022, PhD student at
University of Oxford (supervised by Arnaud Doucet and George
Deligiannidis), visiting to work on the Neural Tangent Kernel
model and the derandomisation of PAC-Bayes bounds. Works
[BG-Preprint6]; [BG-Journal20].

(d) Kento Nozawa [web], May 2019 – October 2019, PhD student at
University of Tokyo (supervised by Issei Sato), visiting to work on
contrastive learning and the first PAC-Bayes view of this problem.
Works [BG-Conf8] (notable: UAI).

research engineers (2)

(a) Arthur Talpaert [web], October 2019 - September 2020, with a
20% supervision share (with Florent Dewez and Vincent Vande-
walle, Inria), funded by our European project PERF-AI. Arthur
implemented the Python library pyrotor, accompanying the pa-
per [BG-Journal18] on aircraft trajectory optimisation. My role
was to guide him and direct the project (jointly with Vincent Van-
dewalle). The library allows for the optimisation of a physical
trajectory under constraint (we applied it to aeronautical and sail-
ing navigation data). Arthur is a data science engineer at Data
Prisme, France.

(b) Bhargav Srinivasa Desikan [web], October 2016 – September 2018,
with a 100% supervision share, funded by an engineering schol-
arship from the Hauts-de-France region (SLAP-ME project). Bhar-
gav worked on extending, and implementing in Python, the CO-
BRA algorithm [BG-Journal4] that I designed during my thesis.
My role was to guide him and lead the project. The Python li-
brary pycobra automatically constructs a non-linear aggregate of
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preliminary predictors. Bhargav also worked on visualising psy-
chomotor principles in human-machine interactions (with Stéphane
Huot, Fanny Chevalier, Pierre Dragicevic from Inria). Works [BG-
Journal8]; [BG-Journal12] (notable: JMLR MLOSS). Bhargav then
completed a master’s at the University of Chicago and started a
PhD at EPFL (Switzerland).

master’s interns . I have supervised, for durations ranging from
3 months to 6 months, 23 Master’s interns, including Valentin Kilian,
Théophile Cantelobre, and Maxime Haddouche before taking them
on as PhD students, as well as students from the University of Lille
(Mostafa Bouziane, Wilfried Heyse in 2017-2018), from India (Astha
Gupta in 2016), from the MVA of ENS Cachan (between 2017 and
2019, Adèle Gillier, Victor Sanh, Adrien Doumergue, Kawisorn Kamtue,
Marc Etheve, Jean-Baptiste Remy; Juliette Rengot with whom I wrote
[BG-Conf5]), from Université Paris-Saclay (in 2019, Louis Pujol with
whom I wrote [BG-Journal14]), and from University College London
(since 2022, Rita Kurban, Alexandra Udaltsova, Shoujing Zhu, Bjorn
Kischelewski, Chloé Hashimoto-Cullen, Shahar Pelles, Naomi Fuchs,
Kenza Benkirane, Ilai Bachrach). I supervised these students on a vari-
ety of topics in machine learning, generally more applied than my re-
search, such as image inpainting, forecasting of landmines, automatic
annotation of medical imaging for the prostate, survival modelling in
statistics, modelling patient pathways in geriatrics in the Lille region,
short-term forecasting of electricity consumption using few-shot learn-
ing, semantic characterisation of invariants in handwritten digit classi-
fication, and many others.

a.3 grant management

Regardless of what one might think about this evolution, securing in-
dividual or project-based grants is now an essential component to re-
search management, and is likely to remain so in the foreseeable future.
I have been incredibly fortunate to progressively secure access to con-
siderable funding, including the grants below.

as a pi

- Inria INSIGHT Associated Team (2016-2018) with University Col-
lege Dublin (Ireland), members were Christophe Biernacki from
Inria, Brendan Murphy, and Nial Friel from UCD. Budget of
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€10k for funding bilateral visits. We explored new model selec-
tion strategies in statistical learning.

- SLAP-ME (2017-2018), funded by the Hauts-de-France region (other
members Stéphane Huot, Fanny Chevalier, Pierre Dragicevic). Bud-
get of €55k for missions and the engineering position of Bhargav
Srinivasa Desikan.

- Inria Associated Team 6PAC (2018-2021) with CWI (Netherlands).
Members Emilie Kaufmann (Inria), Wooter Koolen, and Peter Grün-
wald from CWI. Budget of €30k to fund bilateral visits, working
on extending the PAC-Bayesian framework to achieve fast rates.

- ANR JCJC BEAGLE (2018-2023). The success rate for obtaining
funding in 2018 was 12%. Budget of €180k (equipment, missions,
interns, and the thesis of Théophile Cantelobre), to work on PAC-
Bayesian theory.

as a co-i

- ANR PRC APRIORI (2019-2024). The success rate for obtaining
funding in 2018 was 12%. Members were Emilie Morvant (PI),
Amaury Habrard, Rémi Emonet (University of Saint-Etienne), and
Pascal Germain (Inria). Budget of €300k, of which €120k man-
aged by me (missions, equipment, and the postdoctoral position
of Valentina Zantedeschi), to work on learning representations
via PAC-Bayesian theory.

- PERF-AI (2018-2020, European Commission, CleanSky 2 programme).
The other members were Vincent Vandewalle (Inria) and the startup
Safety Line (PI). Budget of €700k, with €250k managed by Vin-
cent and me (equipment, the postdoctoral position of Florent
Dewez, and the engineering position of Arthur Talpaert). Works
[BG-Journal11]; [BG-Journal18].

- PEPR AI, SHARP project (2024-2028). Consortium of 8 co-Is (with
PI Rémi Gribonval, Inria) to work on frugal learning. Total budget
of €7M, with €950k managed by me, with the first recruitments
of postdocs and PhD students planned for the end of 2024.
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B
C O M P L E T E L I S T O F C O N T R I B U T I O N S

This appendix gathers all my publications, grouped by type. My com-
plete list of publications is available on https://bguedj.github.io/
publications/. I have (co-)authored 26 articles published in interna-
tional journals, 24 articles published in international conferences, 16
preprints currently submitted to journals or conferences, 2 technical
reports and 2 theses (MSc and PhD).

Articles in International Journals

[BG-Journal1] Guedj, B. and Guillot, G. (2011). “Estimating the lo-
cation and shape of hybrid zones”. Molecular Ecol-
ogy Resources 11.6, pp. 1119–1123. doi: 10.1111/j.
1755-0998.2011.03045.x. url: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1755-0998.2011.
03045.x (p. 13).

[BG-Journal2] Guedj, B. and Alquier, P. (2013). “PAC-Bayesian es-
timation and prediction in sparse additive models”.
Electron. J. Statist. 7, pp. 264–291. doi: 10.1214/13-
EJS771. url: https : / / doi . org / 10 . 1214 / 13 -
EJS771 (pp. 7, 11, 36).

[BG-Journal3] Chopin, N., Gadat, S., Guedj, B., Guyader, A., and
Vernet, E. (2015). “On some recent advances on
high dimensional Bayesian statistics”. ESAIM: Pro-
ceedings and Surveys 51, pp. 293–319. doi: 10.1051/
proc/201551016. url: https://doi.org/10.1051/
proc/201551016 (p. 11).

[BG-Journal4] Biau, G., Fischer, A., Guedj, B., and Malley, J. D.
(2016). “COBRA: A combined regression strategy”.
Journal of Multivariate Analysis 146. Special Issue
on Statistical Models and Methods for High or In-
finite Dimensional Spaces, pp. 18–28. issn: 0047-
259X. doi: https://doi.org/10.1016/j.jmva.
2015.04.007. url: http://www.sciencedirect.
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com / science / article / pii / S0047259X15000950
(pp. 11, 77).

[BG-Journal5] Alquier, P. and Guedj, B. (2017). “An oracle inequal-
ity for quasi-Bayesian nonnegative matrix factoriza-
tion”. Mathematical Methods of Statistics 26.1, pp. 55–
67. issn: 1934-8045. doi: 10.3103/S1066530717010045.
url: https://link.springer.com/article/10.
3103%2FS1066530717010045 (pp. 7, 11, 36).

[BG-Journal6] Alquier, P. and Guedj, B. (2018). “Simpler PAC-Bayesian
bounds for hostile data”. Machine Learning 107.5,
pp. 887–902. issn: 1573-0565. doi: 10.1007/s10994-
017- 5690- 0. url: https://doi.org/10.1007/
s10994-017-5690-0 (pp. 7, 11, 30, 35, 36, 41, 42).

[BG-Journal7] Guedj, B. and Robbiano, S. (2018). “PAC-Bayesian
high dimensional bipartite ranking”. Journal of Sta-
tistical Planning and Inference 196, pp. 70–86. issn:
0378-3758. doi: https://doi.org/10.1016/j.jspi.
2017.10.010. url: http://www.sciencedirect.
com / science / article / pii / S0378375817301945
(pp. 7, 11, 36).

[BG-Journal8] Guedj, B. and Srinivasa Desikan, B. (2018). “Pyco-
bra: A Python Toolbox for Ensemble Learning and
Visualisation”. Journal of Machine Learning Research
18.190, pp. 1–5. url: http : / / jmlr . org / beta /
papers/v18/17-228.html (pp. 11, 78).

[BG-Journal9] Li, L., Guedj, B., and Loustau, S. (2018). “A quasi-
Bayesian perspective to online clustering”. Electron.
J. Statist. 12.2, pp. 3071–3113. doi: 10 . 1214 / 18 -
EJS1479. url: https : / / doi . org / 10 . 1214 / 18 -
EJS1479 (pp. 7, 13, 36, 76).

[BG-Journal10] Alliez, P., Di Cosmo, R., Guedj, B., Girault, A., Hacid,
M.-S., Legrand, A., and Rougier, N. (Jan. 2020). “At-
tributing and Referencing (Research) Software: Best
Practices and Outlook From Inria”. Computing in
Science & Engineering 22.1, pp. 39–52. issn: 1558-
366X. doi: 10.1109/mcse.2019.2949413. url: http:
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