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Statistics vs. Machine Learning vs. Artificial Intelligence

Statistics Machine Learning Artificial Intelligence
* Inference under -+ Algorithms that * Broader goal:
uncertainty learn from data intelligent
- Estimation & « Prediction & behaviour
testing generalisation * Perception,
* Interpretability < Optimisation reasoning,
focus action, agents

+ May or may not
rely on ML and
statistics

Common misuse '
In everyday conversation, these terms are often used

interchangeably; in reality, they are distinct — but overlapping —
perspectives.
3/45



Foundations of Al

Practice is largely outpacing theory!

+ Ubiquitous deployment of Al calls for predictability,
robustness, accountability.

* Theory is a way to separate signal from hype, and to design
better systems, rooted in foundational principles.

Human and artificial intelligence operate under uncertainty;
statistics is the powerhouse of the quantification of uncertainty.
Human intelligence is fundamentally statistical in nature.

A definition of learning: compressing past data into
generalisation-ready systems.
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On the mismatch between humans and machines

+ Humans: sample-efficient, causal hints, priors from world
knowledge.

+ Machines: data-hungry, brittle shifts, compute-intensive.

+ A more human-like or frugal Al: principled priors,
compression, selective sensing, uncertainty-aware
decisions.

Ultimately, we aim for similar or better performance with less
data, less compute, and predictable and reproducible behaviour.
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Mathematical foundations of artificial intelligence

Research at the crossroads of statistics, probability theory,
machine learning, optimisation.

Keywords: statistical learning theory, PAC-Bayes, generalisation
bounds, concentration inequalities, computational statistics,
theoretical analysis of deep learning, information theory,
theoretical analysis of generative models

Generalisation theory is all about understanding how to design
learning algorithm that learn well beyond training data. In
machine learning, a model is only as good as its out-of-sample
behaviour.
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Generalisation in machine learning
Case study: PAC-Bayes-powered deep learning

Comparators in generalisation bounds
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Generalisation in machine learning



Learning is to be able to generalise

From examples, what can a
system learn about the
underlying phenomenon?

Memorising the already seen
data is usually bad (overfitting)

Generalisation is the ability to
‘perform’ well on unseen data.

[Source: Wikipedia]
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The deep learning era puts generalisation on the spot

Neural networks architectures trained on massive datasets
achieve zero training error which strongly suggests to
statisticians like me they may overfit.

However they often achieve remarkably low errors on test sets —
hence the interest in generalisation bounds for deep networks.

under-fitting . over-fitting
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Statistical Learning Theory is about high confidence

Fix an algorithm, hypothesis class, sample size. Generate
random samples to study the distribution of test errors.
+ Focusing on the mean of the error distribution?

> can be (highly) misleading

« Statistical Learning Theory: tail of the distribution
> finding bounds which hold with high probability

over random samples of sizem

« Compare to a statistical test — at 99% confidence level

> chances of the conclusion not being true are less than 1%.
The same principles are at play in conformal prediction.
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Why generalisation matters in machine learning

Let (X;,Y;)!; € (X x V)" be an iid sample drawn from some
distribution D®", and let ¢: Y x Y — [0, o) be a loss function.
For any hypothesis h: X — ),

L(h) = % N (h(X),Y),  L(h) = EL(h(X),Y).
i=1

* How can we certify that a hypothesis with good
performance on training data has similarly good
performance on new, unseen data?

+ When does a low training loss imply a low population loss?
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Typical approach: bound the generalisation gap. For a hypothesis
h, population loss L and training loss L, let

r(h) :=L(h) — L(h)
denote the generalisation gap. We want
L(h) = L(h) + L(h) — L(h) = L(h) + F'(h) < L(h) + Bound,

This motivates generalisation bounds: I'(h) < Bound, with
several flavours
+ hypothesis-dependent vs. hypothesis-free
+ (data generating) distribution-dependent vs. distribution-free
* in expectation

- with (arbitrarily) high probability
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The PAC (Probably Approximately Correct) framework

& Valiant, A theory of the learnable, Communications of the ACM, 1984

P[large error] < §. The ‘confidence parameter’ § can be thought
of as the probability of being misled by the training set.

Hence high confidence: P[approximately correct] > 1 — .

With high probability, the generalisation gap of an hypothesis h is
at most something we can control and even compute. For any
0 >0,

P|L(h) < L(h) + B(n,5)|>1—6.

Think of B(n, 9) as Complexity x %. PAC bounds are high
confidence statements on the tail of the distribution of
population losses (think of a statistical test at level 1 — §).
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PAC-Bayes

PAC-Bayes is about PAC generalisation bounds for distributions
over hypotheses. Let Q, denote a posterior distribution that
produces hypotheses,

. ~ 1

£(Qn) = Enng,L(h) = = >~ Eng, Uh(Xi), Yi),
i=1

£(Qn) = Ep~q,L(h) = Epq,EL(h(X),Y).

We compare Q, to a prior Qg, typically through the KL divergence
KL(Qx||Q0) = En~q, log g2 -

& Alquier and Guedj, Simpler PAC-Bayesian bounds for hostile data, Machine Learning, 2018

& Viallard, Haddouche, Simsekli and Guedj, Learning via Wasserstein-Based High Probability Generalisation Bounds,

NeurlPS, 2023
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Bayesian inference

Unique > Posterior
Statistical modelling
(likelihood)
PAC-Bayes
Any distribution Model-free Any distribution
not depending d (possibly) depending
on data Inspired by the on data

Bayesian update
principle - Only
depends on loss
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What makes PAC-Bayes a post-Bayes approach?

+ Prior
+ PAC-Bayes: bounds hold for any distribution
+ Bayes: prior choice impacts inference

+ Posterior

+ PAC-Bayes: bounds hold for any distribution
+ Bayes: posterior uniquely defined by prior and statistical
model

« Data distribution

+ PAC-Bayes: bounds hold for any distribution
+ Bayes: statistical modelling choices impact inference

https://postbayes.github.io/seminar/
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A PAC-Bayesian bound

& Shawe-Taylor and Williamson, A PAC analysis of a Bayes estimator, COLT, 1997
& McAllester, Some PAC-Bayesian theorems, COLT, 1998
& McAllester, PAC-Bayesian model averaging, COLT, 1999

Prototypical bound
For any prior Qo, any ¢ € (0, 1], we have

P(vQy: £(Q) < £(Qn)+ \/KI‘(QnQo);'Og(zﬁ/é’) >1-4.
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What is this useful for?

From
P [L‘(h) < L(h) + B(n, s, on)} >1-94,

+ We can compute the numerical value of the bound
B(n, 4, Qn),
+ We can train new algorithms and derive new hypotheses,
with
Q* ¢ arginf {Z(on) + B(n, s, on)}
Qn< Qo
(optimisation problem which can be solved or approximated by
[stochastic] gradient descent-flavoured methods, Monte Carlo
Markov Chain, variational inference...)
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Variational definition of the KL-divergence

& Csiszar, I-divergence geometry of probability distributions and minimization problems, Annals of Probability, 1975

& Donsker and Varadhan, Asymptotic evaluation of certain Markov process expectations for large time,

Communications on Pure and Applied Mathematics, 1975

& Catoni, Statistical Learning Theory and Stochastic Optimization, Springer, 2004

Let (A, A) be a measurable space.

(i) For any probability P on (A, .A) and any measurable function
¢ : A — Rsuchthat [(expo¢)dP < oo,

o6 (oo o)ap = sup { [ sd0 -1 alp)}

Q<P

(i) If ¢ is upper-bounded on the support of P, the supremum is
reached for the Gibbs distribution G given by

dG gy &P op(a)

@( )_W, acA.
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log [ (expo ¢)dP = sup {/¢dQ-KL(QIIP)}, $ = joeitss.
Proof: let Q <« P.

dQ dP
~KL(Q|G) = - / og <1§dG> 40

= —/Iog <jg) dQ+/|og <jg> dQ
_ —KL(QHP)+/¢dQ— Iog/(expo¢) dP.

KL(+]|-) is non-negative, Q — —KL(Q||G) reaches its max. in
Q=G:
0= sup {/qbdQ - KL(Q]P)} — Iog/(expogb) dpP.

Q<P

Let A > 0 and take ¢ = —\L,
Qx o exp (~AL) P = argin {E(Q) . KL(@|P) } |

Q<P A
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"Why should I care about generalisation?"

Generalisation bounds are both a safety check (theoretical and
possibly numerical guarantee on the performance of hypotheses
on unseen data) and an original training objective.

Formalisms for generalisation

+ Concentration inequalities
+ Rademacher complexities
+ VC-dimension

+ Information-theoretic quantities

PAC-Bayes bounds (focus of today)
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Case study: PAC-Bayes-powered
deep learning



& Letarte, Germain, Guedj and Laviolette, Dichotomize and generalize: PAC-Bayesian binary activated deep neural

networks, NeurlPS, 2019

& Biggs and Guedj, Differentiable PAC-Bayes Objectives with Partially Aggregated Neural Networks, Entropy, 2021
& Biggs and Guedj, On Margins and Derandomisation in PAC-Bayes, AISTATS, 2022

& Cherief-Abdellatif, Shi, Doucet and Guedj, On PAC-Bayesian reconstruction guarantees for VAEs, AISTATS, 2022

& Biggs and Guedj, Non-Vacuous Generalisation Bounds for Shallow Neural Networks, ICML, 2022

Common trait of these works: for specific architectures of deep
neural networks, we obtain PAC-Bayes generalisation bounds
which are

+ used as a training objective — delivering networks which
achieve the best generalisation performance

* non-vacuous when evaluated numerically
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Binary Activated Networks (NeurlPS 2019)

x € R%, y € {—1,1}. Architecture:

* L fully connected layers, di @
denotes the number of neurons of

the k" layer @ @ @

* sgn(a) =1ifa> 0and “
sgn(a) = —1 otherwise ".\
Parameters:
« W, e R%*%-1 denotes the weight

matrices. 0 @

* 0 =vec({Wx};_,) €RP

Prediction
fo(x) = sgn(stgn(WL_1sgn( . sgn(W1x)))) ,
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Building block: one layer (aka linear predictor)

Model f(x) £ sgn(w - x), with w € R?.
« Linear classifiers 7y < {fy|v € R%}

 Predictor
def
Fu(X) = Brnou v(x) = erf(ﬁ\\xH)
« Sampling + closed form of the KL + a
few other tricks + extension to an
arbitrary number of layers
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Generalisation bound

Let Fy denote the network with parameter §. With probability at
least 1 — ¢, forany # € RP

L(Fy) <

_ 1 ~ KL(6, 0p) + log 2T
Cl:r;% {1 e (1 —exp <—C£(F9) - p= .
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Numerical experiments

Model name Cost function Train split ~ Valid split ~ Model selection Prior

MLP-tanh linear loss, L2 regularized 80% 20% valid linear loss -

PBGNet, linear loss, L2 regularized 80% 20% valid linear loss random init

PBGNet PAC-Bayes bound 100 % - PAC-Bayes bound random init

PBGNetpre

- pretrain linear loss (20 epochs) 50% - - random init

- final PAC-Bayes bound 50% = PAC-Bayes bound pretrain

MLP-tanh PBGNet, PBGNet PBGNetpre

Dataset L Z z z L L Bound c £ Bound
ads 0.021 0.037 0.018 0.032 0.024 0.038 0.283 0.034 0.033 0.058
adult 0.128 0.149 0.136 0.148 0.158 0.154 0.227 0.153 0.151 0.165
mnist17 0.003 0.004 0.008 0.005 0.007 0.009 0.067 0.003 0.005 0.009
mnist49 0.002 0.013 0.003 0.018 0.034 0.039 0.153 0.018 0.021 0.030
mnist56 0.002 0.009 0.002 0.009 0.022 0.026 0.103 0.008 0.008 0.017
mnistLH 0.004 0.017 0.005 0.019 0.071 0.073 0.186 0.026 0.026 0.033
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Comparators in generalisation bounds



Comparing Comparators in Generalization Bounds

Fredrik Hellstrom Benjamin Guedj
University College London Inria and University College London

& Hellstrom and Guedj, Comparing comparators in generalization bounds, AISTATS, 2024
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The typical approach

+ Most generalisation bounds are about bounding the
difference £ — L
+ Simple, and easy to interpret, but not always tight!

« Can we do better?
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Generalising with Comparator Functions

We define the comparator function as A: [0, c0)? — [0, o)
convex.

A comparator function computes a discrepancy between the
training and population loss.
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Generic PAC-Bayes Bound with a comparator

Theorem
Assume the loss 7 is bounded by 1. For any comparator A,

KL(Qn]|Qq) + log T2
n

P

A(L, L) <

] 2 1 - 55
where

n
Ta(n)= sup > <n>rk(1 — r)1—kenAlk/nr)
0

& Bégin et al., PAC-Bayesian bounds based on the Rényi divergence, AISTATS, 2016
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Many known bounds arise as instances of the bound from Bégin
et al. (2016). Examples:

+ Difference: A(p,q) = p — g, we obtain McAllester’s bound

iy (ﬁ(Qn) < L(Qp) + \/KL(Q””QO) i |og(2ﬁ/5)) > 14,

2n -
+ Catoni's family, forany v € R

A, (p,q) = vq — log(1—p + pe”),

and we get the bound

n

P (Av(ﬁ(on),c(on» < Sl bg;) >1-4
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* Binary KL divergence

A(p,q) = kI(q, p) = KL(Bern(q) || Bern(p))
:qlogz+(1 —Q)logl_gy

and we get the Maurer-Langford-Seeger bound

vn
P (kI(E(on>,c(on)) < KHGn]0) + log 25) S1-s

So which comparator gives the best bound?
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When the loss is bounded, the ki is the optimal comparator (up to
a log term), as established by Foong et al. (2021).

& Foong et al., How Tight Can PAC-Bayes be in the Small Data Regime?, NeurIPS, 2021

In this work we relax the boundedness assumption.
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Bounds in expectation

We let

L(Qn) = Ep g E [ Zz
L(Qn) = Epq,E[£(h(X),Y)].

Let X be a real-valued random variable. The cumulant generating
function (CGF) of X is

Uy (t) =logE [etx} .
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Theorem — Average Case Generalisation Bound

Let P be a set of distributions such that for all r € [0, c0), there
exists P, € P with meanr. Let C be the set of proper, convex,
lower semicontinuous functions R? — R, and let F c C be the
set of f satisfying:

E [ef(f(h),ll(h))} < Exprp [ef(i,ﬁ(h))} .

Then forall A € Fand all Q, <« Qq:

R KL(QnD"|QoD") + log TR (n)
AE(Qn), £(0n)) < = °

)

where

TR(N) = sup Ey.p, [exp (NA(X,r))].
re[0,00)
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How do we make this relevant beyond bounded losses?

Recall that o-sub-Gaussian random variables are characterized
by having a CGF that is dominated by the CGF of some Gaussian
distribution with variance o2, with similar notions for, e.g.,
sub-gamma and sub-exponential random variables.

The convex conjugate of a function f is given by

F(y) = sup {(x,y) — f(x)}.
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Definition of Sub-P Losses

Let P be a set of distributions such that, for all r € [0, 00), there
exists P, € P with first moment r.

Forallr € [0,00),let 7 c Rand T = {7; : r € [0,00)}. We say
that the loss is sub-(P, T) if, for allh and t € T, we have

E [exp(t ((h(X), )] < Exep, lexp(tX)].

If 7- = R for all r € [0, ), we say that the loss is sub-P.

A sub-P loss never has heavier tails than those of P.
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Theorem — Optimal Comparator and Bound

Assume that the loss is sub-(P, 7). Let Wp(t) = log Ex.p,[€”] be
the CGF of the distribution Pp, and let the Cramér function be
defined as

AP(q.p) = Vi5(q) = sup {tg — Wp(t)}.
teTp
Define the bound functional

B2 (a, B,1) = sup {p : Aa, p) < Mm} .
peEL n

Then, for any A € F, we have
o~ ~AV s
£(Qn) < By (£(Qn), KL(QnD"[QoD"), )

< B2 (£(Qn), KL(QuD"|QoD"), TH(n) ).
In other words, the optimal average generalisation bound is

obtained with the Cramér function as comparator.
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For independent and identically distributed random variables, the
Cramér function characterises the probability of rare events.
Thus, the connection to generalisation bounds is somewhat
natural.

& Cramér, On a new limit theorem of the theory of probability, Uspekhi Mathematicheskikh Nauk, 1944

& Boucheron et al., Concentration inequalities, A nonasymptotic theory of independence, Oxford University Press, 2013
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The case of natural exponential families

« If P is a NEF, the Cramér function is a KL

AP(q,p) = V;(q) = KL(Pq|| Pp)-

 For the case of Gaussian distributions with known variance,
the optimal comparator is given by

2
KL (A(g,02) | M(p,0%) = 42
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Examples of Cramér Functions

+ Bounded loss: binary KL kl(g, p),
- Sub-Gaussian: “’;;;)2,

« Sub-Poisson: p — q + qlog(q/p),
* Sub-Gamma: k( —1—log ?),

+ Sub-Laplacian:

V@ pEiE

A\LIJap(Qap) = b
2 (b/(a—py+b7 - b2)
+ log G=pP .
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Theorem — Generic PAC-Bayesian Bound for Sub-7 losses

Assume the loss is Sub-P. Then for any A € F, with probability
at least 1 — ¢, the following holds simultaneously for all

posteriors Q, < Qg
Tx(n)

A (Z(Qn)aﬁ(on)> < KL(QnHQO)n—I— log vy
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Main takeaways

« Comparator choice is crucial in generalisation

+ The optimal choice for unbounded losses: Cramér function
derived from CGF

+ For NEFs, this is equivalent to using the KL divergence

In a nutshell
The tightest (up to log terms) generalisation bounds with

controllable moment-generating functions are obtained with the
Cramér function as the comparator function.
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+ Al is everywhere — but often misunderstood.

« Statistics is central to making Al reliable, interpretable, and
trustworthy.

+ From uncertainty quantification to frugal Al, statistical
thinking guides how we design and assess intelligent
systems.
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