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Prelude: towards Artificial General Intelligence (AGI)

Artificial entity capable of interacting and coexisting with its environment,
especially humans:

Comply to oral / written / visual instructions

Initiate new decisions depending on environment

Must be able to explain its actions (based on a rationale)

Compliance to an overarching set of rules (morals, law,
time/institution/task-dependent, etc.) likely to evolve

Acknowledge its environment through ”senses” (captors, . . . ) and
ability to preserve it (especially living creatures such as humans!)

. . .
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AGI could be embedded in physical agents (such as robots, vehicules)

or available through digital interfaces (computers).
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Can’t be hard-programmed! Must be able to learn from previous sample
tasks / data / situations / . . . and adapt its behaviour.

Must involve multi-disciplinary research efforts!
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Among the many tasks needed to solve AGI, mostly interested in the
learning + decision-making module.
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It’s all connected

Theoreticians

Designers of algorithms

Practitioners of 
machine learning

The sensible 
world
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The big picture

Solving AGI requires outstanding coordinated multi-disciplinary research
efforts.

Where do we mathematicians and computer scientists fit in?

Contribute to understanding and designing AGI systems machine
learning, probability theory, optimisation, deep learning, computational
statistics, reinforcement learning, ...

What about me?
Personal research obsession: rethinking generalisation!
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Learning is to be able to generalise

[Credits: Wikipedia]

From examples, what can a system
learn about the underlying
phenomenon?

Memorising the already seen data is
usually bad −→ overfitting

Generalisation is the ability to
’perform’ well on unseen data.

A few of those slides are inspired by our ICML 2019 tutorial, ”A Primer on PAC-Bayesian Learning”, Guedj and Shawe-Taylor

https://bguedj.github.io/icml2019/index.html
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The simplest setting

Learning algorithm A : Zm → H

• Z = X× Y • H = hypothesis class

Training set (aka sample): Sm = ((X1,Y1), . . . , (Xm,Ym))
a finite sequence of input-output examples.

• Data-generating distribution P over Z.
• Learner doesn’t know P, only sees the training set.

• The training set examples are i.i.d. from P: Sm ∼ Pm
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Generalisation
Loss function `(h(X ),Y ) to measure the discrepancy between a
predicted output h(X ) and the true output Y .

Empirical risk: Rin(h) = 1
m

∑m
i=1 `(h(Xi),Yi)

(in-sample)

Theoretical risk: Rout(h) = E
[
`(h(X ),Y )

]
(out-of-sample)

If predictor h does well on the in-sample (X ,Y ) pairs...
...will it still do well on out-of-sample pairs?

Generalisation gap: ∆(h) = Rout(h) − Rin(h)

Upper bounds: with high probability ∆(h) 6 ε(m, δ)

I Rout(h) 6 Rin(h) + ε(m, δ)
Flavours:

distribution-free

algorithm-free

distribution-dependent

algorithm-dependent
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The PAC framework

PAC stands for Probably Approximately Correct.

Roughly translated: with high probability, the error of an hypothesis h is
at most something we can control and even compute. For any δ > 0,

P

[
Rout(h) 6 Rin(h) + ε(m, δ)

]
> 1 − δ.

Think of ε(m, δ) as Complexity × log 1
δ√

m .

Rich literature on PAC generalisation bounds, for many machine learning
algorithms in a variety of settings.

See Guedj (2019) for a recent survey on PAC-Bayes
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Generalisation bounds are a safety check: they give a theoretical
guarantee on the performance of a learning algorithm on any unseen
data.

Generalisation bounds:

provide a computable control on the error on any unseen data with
prespecified confidence

explain why specific learning algorithms actually work

and even lead to designing new algorithm which scale to more
complex settings
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Is deep learning breaking statistical learning theory?

Neural networks architectures trained on massive datasets achieve zero
training error which does not bode well for their performance: this
strongly suggests overfitting...

... yet they also achieve remarkably low errors on test sets!
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A famous plot...

R
is
k

Training risk

Test risk

Complexity of H
sweet spot

under-fitting over-fitting

Belkin et al. (2019)
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... which might just be half of the picture
R
is
k

Training risk

Test risk

Complexity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

Belkin et al. (2019)
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The jigsaw problem

... a.k.a. representations matter.

Credits: Noroozi and Favaro (2016)
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A tale of two learners – 1

Deep neural network

Typically identifies a specific item (say, a horse) in an image with
accuracy > 99%.
Training samples: millions of annotated images of horses –
GPU-expensive training.
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A tale of two learners – 2

D. (2.5 yo)

Identifies horses with 100% accuracy.

Training samples: a handful of children
books, bedtime stories and (poorly
executed) drawings.

Also expensive training.
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Learning is to be able to generalise...

... but not from scratch! AGI will not
be solved by tackling each learning
task as a fresh draw – must not be
blind to context.

Need to incorporate structure /
semantic information / implicit
representations of the ”sensible”
world.

Potential game-changer for
algorithms design (more
”intelligent”, resources-efficient,
etc.) and practitioners.

Very exciting research avenue for
theoreticians for the next decade(s)!
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Going further

B. Guedj and J. Shawe-Taylor. ”A Primer on PAC-Bayesian Learning”, ICML
2019 tutorial, https://bguedj.github.io/icml2019/index.html

An excellent book: Valiant (2013), Probably Approximately Correct: Nature’s
Algorithms for Learning and Prospering in a Complex World.

Connect with the UCL Centre for Artificial Intelligence (home to our UKRI
Centre for Doctoral Training in Foundational Artificial Intelligence)
https://www.ucl.ac.uk/ai-centre/

20 27
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Thanks!

Feel free to reach out!
https://bguedj.github.io

b.guedj@ucl.ac.uk

7 @bguedj

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learning practice and the bias-variance
trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. PAC-Bayesian learning of linear classifiers. In Proceedings of the 26th
Annual International Conference on Machine Learning, ICML, 2009.

Benjamin Guedj. A primer on PAC-Bayesian learning. arXiv preprint arXiv:1901.05353, 2019.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. Lecture Notes in
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Inc., USA, 2013. ISBN 0465032710.
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Case study:
Generalisation bounds for deep neural networks

 G. Letarte, P. Germain, B. G., F. Laviolette. Dichotomize and
Generalize: PAC-Bayesian Binary Activated Deep Neural Networks,
NeurIPS 2019
https://arxiv.org/abs/1905.10259
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Context

PAC-Bayes has been successfully used to analyse and understand
generalisation abilities of machine learning algorithms.

 Guedj (2019), ”A Primer on PAC-Bayesian Learning”,
Proceedings of the French Mathematical Society,
https://arxiv.org/abs/1901.05353

: Guedj & Shawe-Taylor (2019), ”A Primer on PAC-Bayesian
Learning”, ICML 2019 tutorial
https://bguedj.github.io/icml2019/index.html

Most PAC-Bayes generalisation bounds are computable tight
upper bounds on the population error, i.e. an estimate of the error
on any unseen future data.

PAC-Bayes bounds hold for any distribution on hypotheses. As
such, they are a principled way to invent new learning algorithms.
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This spotlight

 G. Letarte, P. Germain, B. Guedj, F. Laviolette. Dichotomize and
Generalize: PAC-Bayesian Binary Activated Deep Neural Networks,
NeurIPS 2019
https://arxiv.org/abs/1905.10259

We focused on DNN with a binary activation function: surprisingly
effective while preserving low computing and memory footprints.

Very few meaningful generalisation bounds for DNN
Breakthrough: SOTA PAC-Bayes generalisation bound

How to train a network with non-differentiable activation function?
Breakthrough: training by minimising the bound (SGD + tricks)

Who cares? Generalisation bounds are a theoretician’s concern!
Breakthrough: Our bound is computable and serves as a safety
check to practitioners

24 27
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Binary Activated Neural Networks
x ∈ Rd0 , y ∈ {−1, 1}

Architecture:

L fully connected layers

dk denotes the number of neurons of
the k th layer

sgn(a) = 1 if a > 0 and sgn(a) = −1
otherwise

Parameters:

Wk ∈ Rdk×dk−1 denotes the weight
matrices.

θ= vec
(
{Wk }

L
k=1

)
∈RD

x1 · · · xd

sgn sgn sgn

sgn sgn sgn

sgn

Prediction

fθ(x) = sgn
(
wLsgn

(
WL−1sgn

(
. . . sgn

(
W1x

))))
,
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Generalisation bound

For an arbitrary number of layers and neurons, with probability at least
1 − δ, for any θ ∈ RD

Rout(Fθ) 6

inf
C>0

{
1

1 − e−C

(
1 − exp

(
−CRin(Fθ) −

1
2 ||θ− θ0||

2 + log 2
√

m
δ

m

)) }
,

where

Rin(Fθ) = E
θ ′∼Qθ

Rin(fθ ′) =
1
m

m∑
i=1

[
1
2
−

1
2

yiFθ(xi)

]
.
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(A selection of) numerical results

Model name Cost function Train split Valid split Model selection Prior

MLP–tanh linear loss, L2 regularized 80% 20% valid linear loss -
PBGNet` linear loss, L2 regularized 80% 20% valid linear loss random init
PBGNet PAC-Bayes bound 100 % - PAC-Bayes bound random init

PBGNetpre
– pretrain linear loss (20 epochs) 50% - - random init
– final PAC-Bayes bound 50% - PAC-Bayes bound pretrain

Dataset
MLP–tanh PBGNet` PBGNet PBGNetpre

ES ET ES ET ES ET Bound ES ET Bound

ads 0.021 0.037 0.018 0.032 0.024 0.038 0.283 0.034 0.033 0.058
adult 0.128 0.149 0.136 0.148 0.158 0.154 0.227 0.153 0.151 0.165
mnist17 0.003 0.004 0.008 0.005 0.007 0.009 0.067 0.003 0.005 0.009
mnist49 0.002 0.013 0.003 0.018 0.034 0.039 0.153 0.018 0.021 0.030
mnist56 0.002 0.009 0.002 0.009 0.022 0.026 0.103 0.008 0.008 0.017
mnistLH 0.004 0.017 0.005 0.019 0.071 0.073 0.186 0.026 0.026 0.033
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