On generalisation and learning: Generalisation bounds for deep neural networks

Benjamin Guedj https://bguedj.github.io 🖤 @bguedj

> JdS MALIA, June 9, 2021

Learning is to be able to generalise

[Credits: Wikipedia]

From examples, what can a system learn about the underlying phenomenon?

Memorising the already seen data is usually bad \longrightarrow overfitting

Generalisation is the ability to 'perform' well on unseen data.

Is deep learning breaking statistical learning theory?

Neural networks architectures trained on massive datasets achieve zero training error which does not bode well for their performance: this strongly suggests overfitting...

... yet they also achieve remarkably low errors on test sets!

A famous plot...

Belkin et al. (2019)

... which might just be half of the picture

Belkin et al. (2019)

A tale of two learners

On our left: a deep neural network

Typically identifies a specific item (say, a horse) in an image with accuracy > 99%. Training samples: millions of annotated images of horses – GPU-expensive training.

A tale of two learners

On our right: the next generation

Identify horses with 100% accuracy. Also very good at transferring to *e.g.* zebras

Training samples: a handful of children books, bedtime stories and (poorly executed) drawings.

Also expensive training.

Learning is to be able to generalise...

... but not from scratch! Tackling each learning task as a fresh draw unlikely to be efficient – must not be blind to context.

Need to incorporate structure / semantic information / implicit representations of the "sensible" world.

Should lead to better algorithms design (more "intelligent", frugal / resources-efficient, etc.)

ICML 2019 Tutorial

A Primer on PAC-Bayesian Learning

https://bguedj.github.io/icml2019/index.html

Generalisation

Loss function $\ell(h(X), Y)$ to measure the discrepancy between a predicted output h(X) and the true output Y.

Empirical risk: (in-sample)

$$R_{\rm in}(h) = \frac{1}{m} \sum_{i=1}^m \ell(h(X_i), Y_i)$$

Theoretical risk: (out-of-sample)

```
R_{\rm out}(h) = \mathbb{E}\big[\ell(h(X), Y)\big]
```

If predictor h does well on the in-sample (X, Y) pairs...

...will it still do well on out-of-sample pairs?

Generalisation gap: $\Delta(h) = R_{out}(h) - R_{in}(h)$

Upper bounds: with high probability $\Delta(h) \leq \epsilon(m, \delta)$

 $\blacktriangleright \quad R_{\rm out}(h) \leqslant R_{\rm in}(h) + \epsilon(m, \delta)$

Flavours:

- distribution-free
- algorithm-free

- distribution-dependent
- algorithm-dependent

The PAC (Probably Approximately Correct) framework

In a nutshell: with high probability, the generalisation error of an hypothesis *h* is at most something we can control and even compute. For any $\delta > 0$,

$$\mathbb{P}\left[R_{\mathrm{out}}(h)\leqslant R_{\mathrm{in}}(h)+\epsilon(m,\delta)\right]\geqslant 1-\delta.$$

Think of $\epsilon(m, \delta)$ as Complexity $\times \frac{\log \frac{1}{\delta}}{\sqrt{m}}$.

This is about high confidence statements on the tail of the distribution of test errors (compare to a statistical test at level $1 - \delta$).

PAC-Bayes is about PAC generalisation bounds for *distributions over hypotheses*.

Why should I care about generalisation?

Generalisation bounds are a safety check: they give a theoretical guarantee on the performance of a learning algorithm on any unseen data.

Generalisation bounds:

- provide a computable control on the error on any unseen data with prespecified confidence
- explain why some specific learning algorithms actually work
- and even lead to designing new algorithms which scale to more complex settings

A classical PAC-Bayesian bound

Pre-history: PAC analysis of Bayesian estimators Shawe-Taylor and Williamson (1997) Birth: PAC-Bayesian bound McAllester (1998, 1999)

Prototypical bound

For any prior P, any $\delta \in (0, 1]$, we have

$$\mathbb{P}^{m}\left(\forall Q \text{ on } \mathfrak{H}: R_{\text{out}}(Q) \leqslant R_{\text{in}}(Q) + \sqrt{\frac{\text{KL}(Q\|P) + \ln \frac{2\sqrt{m}}{\delta}}{2m}}\right) \geq 1 - \delta,$$

with $R_{\text{in}}(Q) \equiv \int_{\mathfrak{H}} R_{\text{in}}(h) \, dQ(h), \qquad R_{\text{out}}(Q) \equiv \int_{\mathfrak{H}} R_{\text{out}}(h) \, dQ(h),$
 $\text{KL}(Q\|P) = \underset{h\sim Q}{\mathsf{E}} \ln \frac{Q(h)}{P(h)}.$

Want to know more? *Guedj* (2019) + https://bguedj.github.io/talks/

PAC-Bayes-driven learning algorithms

With an arbitrarily high probability and for any posterior distribution Q,

Error on unseen data \leq Error on sample + complexity term $R_{\text{out}}(Q) \leq R_{\text{in}}(Q) + F(Q, \cdot)$

This defines a principled strategy to obtain new learning algorithms:

$$h \sim Q^{\star}$$

 $Q^{\star} \in \operatorname*{arg\,inf}_{Q \ll P} \left\{ R_{\mathrm{in}}(Q) + F(Q, \cdot) \right\}$

(optimisation problem which can be solved or approximated by [stochastic] gradient descent-flavoured methods, Monte Carlo Markov Chain, variational inference...)

SVMs, KL-regularized Adaboost, exponential weights are all minimisers of PAC-Bayes bounds.

Generalisation guarantees for Binary activated DNNs

Letarte, Germain, Guedj and Laviolette (2019). Dichotomize and generalize: PAC-Bayesian binary activated deep neural networks, NeurIPS 2019.

Standard Neural Networks Classification setting:

- $\blacksquare \mathbf{x} \in \mathbb{R}^{d_0}$
- *y* ∈ {−1, 1}

Architecture:

- L fully connected layers
- *d_k* denotes the number of neurons of the *k*th layer
- $\label{eq:static} \ensuremath{{\rm \blacksquare}} \ensuremath{\,\sigma}: \ensuremath{\mathbb{R}} \to \ensuremath{\mathbb{R}} \ensuremath{\,\text{is the activation function}}$

Parameters:

Prediction

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma \big(\boldsymbol{w}_L \sigma \big(\boldsymbol{W}_{L-1} \sigma \big(\dots \sigma \big(\boldsymbol{W}_1 \boldsymbol{x} \big) \big) \big) \big) \,.$$

PAC-Bayesian bounds for Stochastic NN

Idea: Bound the expected loss of the network under a Gaussian perturbation of the weights

 $\mathsf{Empirical \ loss:} \underset{\theta' \sim \mathcal{N}(\theta, \Sigma)}{\mathsf{E}} R_{\mathrm{in}}(f_{\theta'}) \longrightarrow \mathsf{estimated \ by \ sampling}$

 $\mbox{Complexity term: } {\rm KL}(\mathcal{N}(\theta, \Sigma) \| \mathcal{N}(\theta_0, \Sigma_0)) \quad \longrightarrow \quad \mbox{closed form}$

Binary Activated Neural Networks $\mathbf{x} \in \mathbb{R}^{d_0}$

■ $y \in \{-1, 1\}$

Architecture:

- L fully connected layers
- *d_k* denotes the number of neurons of the *k*th layer
- sgn(a) = 1 if a > 0 and sgn(a) = −1 otherwise

Parameters:

■ $\mathbf{W}_k \in \mathbb{R}^{d_k \times d_{k-1}}$ denotes the weight matrices.

$$\bullet \theta = \operatorname{vec}\left(\{\mathbf{W}_k\}_{k=1}^L\right) \in \mathbb{R}^D$$

Prediction

Building block: one layer (aka linear predictor)

X1

*X*2

Xd

Two Layers (shallow network)

Two Layers (shallow network) Posterior $Q_{\theta} = \mathcal{N}(\theta, I_D)$, over the family of all networks $\mathcal{F}_D = \{f_{\tilde{a}} \mid \tilde{\theta} \in \mathbb{R}^D\}$, where

 $f_{\Theta}(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}_2 \cdot \operatorname{sgn}(\mathbf{W}_1 \mathbf{x}))$. $F_{\theta}(\mathbf{x}) = \mathop{\mathbf{E}}_{\tilde{\theta} \sim Q_{\theta}} t_{\tilde{\theta}(\mathbf{x})}$ $= \int_{\mathbf{r} d \cdot \mathbf{v} d \cdot} Q_1(\mathbf{V}_1) \int_{\mathbf{r} d \cdot} Q_2(\mathbf{v}_2) \operatorname{sgn}(\mathbf{v}_2 \cdot \operatorname{sgn}(\mathbf{V}_1 \mathbf{x})) d\mathbf{v}_2 d\mathbf{V}_1$ $= \left[\sup_{\mathbf{v} \in \mathbf{V}, \mathbf{v} \in \mathbf{V}} Q_1(\mathbf{V}_1) \operatorname{erf} \left(\frac{\mathbf{w}_2 \cdot \operatorname{sgn}(\mathbf{V}_1 \mathbf{x})}{\sqrt{2} \|\operatorname{sgn}(\mathbf{V}_1 \mathbf{x})\|} \right) d\mathbf{V}_1 \right]$ $= \sum_{\mathbf{r}: d_1 \times d_2} \operatorname{erf}\left(\frac{\mathbf{w}_2 \cdot \mathbf{s}}{\sqrt{2d_1}}\right) \int_{\mathbf{r}: d_1 \times d_2} \operatorname{sgn}(\mathbf{V}_1 \mathbf{x}) [\mathbf{Q}_1(\mathbf{V}_1) \, d\mathbf{V}_1]$ $s \in \{-1, 1\}^{d_1}$ $= \sum_{\mathbf{s} \in \{-1,1\}^{d_1}} \underbrace{\operatorname{erf}\left(\frac{\mathbf{w}_2 \cdot \mathbf{s}}{\sqrt{2d_1}}\right)}_{\mathbf{x} = 1} \underbrace{\prod_{i=1}^{d_1} \left[\frac{1}{2} + \frac{s_i}{2} \operatorname{erf}\left(\frac{\mathbf{w}_1^i \cdot \mathbf{x}}{\sqrt{2} \|\mathbf{x}\|}\right)\right]}_{\mathbf{x} = 1}.$

 $Pr(\mathbf{s}|\mathbf{x},\mathbf{W}_1)$

Generalisation bound

Let F_{θ} denote the network with parameter θ . With probability at least $1 - \delta$, for any $\theta \in \mathbb{R}^{D}$

$$R_{\text{out}}(F_{\theta}) \leq \inf_{C>0} \left\{ \frac{1}{1 - e^{-C}} \left(1 - \exp\left(-CR_{\text{in}}(F_{\theta}) - \frac{\text{KL}(\theta, \theta_{0}) + \log\frac{2\sqrt{m}}{\delta}}{m} \right) \right) \right\}$$

Numerical experiments

Model name	Cost function	Train split	Valid split	Model selection	Prior	
MLP–tanh PBGNetℓ PBGNet	linear loss, L2 regularized linear loss, L2 regularized PAC-Bayes bound	80% 80% 100 %	20% 20% -	valid linear loss valid linear loss PAC-Bayes bound	random init random init	
PBGNet _{pre} – pretrain – final	linear loss (20 epochs) PAC-Bayes bound	50% 50%	-	- PAC-Bayes bound	random init pretrain	

	MLP-tanh		Р	PBGNetℓ		PBGNet			PBGNetpre		
Dataset	R _{in}	Rout	R _{in}	Rout	R _{in}	R _{out}	Bound	R _{in}	R _{out}	Bound	
ads	0.021	0.037	0.018	0.032	0.024	0.038	0.283	0.034	0.033	0.058	
adult	0.128	0.149	0.136	0.148	0.158	0.154	0.227	0.153	0.151	0.165	
mnist17	0.003	0.004	0.008	0.005	0.007	0.009	0.067	0.003	0.005	0.009	
mnist49	0.002	0.013	0.003	0.018	0.034	0.039	0.153	0.018	0.021	0.030	
mnist56	0.002	0.009	0.002	0.009	0.022	0.026	0.103	0.008	0.008	0.017	
mnistLH	0.004	0.017	0.005	0.019	0.071	0.073	0.186	0.026	0.026	0.033	

Quest for generalisation guarantees (about half via PAC-Bayes)

Directions:

- Generic bounds (relaxing assumptions such as iid or boundedness, new concentration inequalities, ...)
- Tight bounds for specific algorithms (deep neural networks, NMF, ...)
- Towards new measures of performance (CVaR, ranking, contrastive losses, ...)
- Coupling theory and implemented algorithms: bound-driven algorithms
- Applications (providing guidelines to machine learning users, sustainable / frugal machine learning)

References I

- M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019. ISSN 0027-8424. doi: 10.1073/pnas.1903070116. URL https://www.pnas.org/content/116/32/15849.
- G. K. Dziugaite and D. M. Roy. Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data. In *Proceedings of Uncertainty in Artificial Intelligence (UAI)*, 2017.
- B. Guedj. A Primer on PAC-Bayesian Learning. In Proceedings of the second congress of the French Mathematical Society, 2019. URL https://arxiv.org/abs/1901.05353.
- J. Langford and R. Caruana. (Not) Bounding the True Error. In NIPS, pages 809-816. MIT Press, 2001.
- G. Letarte, P. Germain, B. Guedj, and F. Laviolette. Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks. In NeurIPS, 2019.
- D. McAllester. Some PAC-Bayesian theorems. In Proceedings of the International Conference on Computational Learning Theory (COLT), 1998.
- D. McAllester. Some PAC-Bayesian theorems. Machine Learning, 37, 1999.
- J. Shawe-Taylor and R. C. Williamson. A PAC analysis of a Bayes estimator. In Proceedings of the 10th annual conference on Computational Learning Theory, pages 2–9. ACM, 1997. doi: 10.1145/267460.267466.