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Greetings!

Undergrad in pure mathematics, PhD [LSTA and Telecom,
2011–2013] with G. Biau and E. Moulines

Tenured research scientist at Inria since 2014 – Modal team, Lille -
Nord Europe

Principal research fellow at UCL since 2018, Dept. of Computer
Science and Centre for AI, and visiting researcher at the Alan
Turing Institute

Scientific director of the Inria London Programme since 2020

Research at the crossroads of statistics, probability, machine learning,
optimisation.

Statistical learning theory, PAC-Bayes, computational statistics,
theoretical analysis of deep learning and representation learning to
name but a few interests.

Personal obsession: generalisation.
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Learning is to be able to generalise

[Credits: Wikipedia]

From examples, what can a system
learn about the underlying
phenomenon?

Memorising the already seen data is
usually bad −→ overfitting

Generalisation is the ability to
’perform’ well on unseen data.
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Is deep learning breaking statistical learning theory?

Neural networks architectures trained on massive datasets achieve zero
training error which does not bode well for their performance: this
strongly suggests overfitting...

... yet they also achieve remarkably low errors on test sets!
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A famous plot...

R
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Test risk

Complexity of H
sweet spot

under-fitting over-fitting

Belkin et al. (2019)
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... which might just be half of the picture
R
is
k

Training risk

Test risk

Complexity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

Belkin et al. (2019)
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Semantic representation to accelerate learning?

Noroozi and Favaro (2016)

Semantic content of data is key! −→ MURI project
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A tale of two learners

First contender: a deep neural network

Typically identifies a specific item (say, a horse) in an image with
accuracy > 99%.
Training samples: millions of annotated images of horses –
GPU-expensive training.
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A tale of two learners

Second contender: my kids

Identify horses with 100%
accuracy. Also very good at
transferring to e.g. zebras

Training samples: a handful of
children books, bedtime stories
and (poorly executed)
drawings.

Also expensive training.
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Learning is to be able to generalise...

... but not from scratch! Tackling
each learning task as a fresh draw
unlikely to be efficient – must not be
blind to context.

Need to incorporate structure /
semantic information / implicit
representations of the ”sensible”
world.

Should lead to better algorithms
design (more ”intelligent”, frugal /
resources-efficient, etc.)
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Part I
A Primer on PAC-Bayesian Learning

(short version of our ICML 2019 tutorial)

https://bguedj.github.io/icml2019/index.html
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The simplest setting

Learning algorithm A : Zm → H

• Z = X× Y • H = hypothesis class

Training set (aka sample): Sm = ((X1,Y1), . . . , (Xm,Ym))
a finite sequence of input-output examples.

• Data-generating distribution P over Z.
• Learner doesn’t know P, only sees the training set.

• The training set examples are i.i.d. from P: Sm ∼ Pm
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Statistical Learning Theory is about high confidence
For a fixed algorithm, function class and sample size, generating random
samples −→ distribution of test errors

Focusing on the mean of the error distribution?

. can be misleading: learner only has one sample

Statistical Learning Theory: tail of the distribution

. finding bounds which hold with high probability

over random samples of size m

Compare to a statistical test – at 99% confidence level

. chances of the conclusion not being true are less than 1%

PAC: probably approximately correct (Valiant, 1984)
Use a ‘confidence parameter’ δ: Pm[large error] 6 δ
δ is the probability of being misled by the training set

Hence high confidence: Pm[approximately correct] > 1 − δ
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What to achieve from the sample?

Use the available sample to:

1 learn a predictor

2 certify the predictor’s performance

Learning a predictor:

• algorithm driven by some learning principle

• informed by prior knowledge resulting in inductive bias

Certifying performance:

• what happens beyond the training set

• generalisation bounds

Actually these two goals interact with each other!
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Generalisation
Loss function `(h(X ),Y ) to measure the discrepancy between a
predicted output h(X ) and the true output Y .

Empirical risk: Rin(h) = 1
m

∑m
i=1 `(h(Xi),Yi)

(in-sample)

Theoretical risk: Rout(h) = E
[
`(h(X ),Y )

]
(out-of-sample)

If predictor h does well on the in-sample (X ,Y ) pairs...
...will it still do well on out-of-sample pairs?

Generalisation gap: ∆(h) = Rout(h) − Rin(h)

Upper bounds: with high probability ∆(h) 6 ε(m, δ)

I Rout(h) 6 Rin(h) + ε(m, δ)
Flavours:

distribution-free

algorithm-free

distribution-dependent

algorithm-dependent
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The PAC (Probably Approximately Correct) framework

In a nutshell: with high probability, the generalisation error of an
hypothesis h is at most something we can control and even compute.
For any δ > 0,

P

[
Rout(h) 6 Rin(h) + ε(m, δ)

]
> 1 − δ.

Think of ε(m, δ) as Complexity × log 1
δ√

m .

This is about high confidence statements on the tail of the distribution of
test errors (compare to a statistical test at level 1 − δ).

PAC-Bayes is about PAC generalisation bounds for distributions over
hypotheses.
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Why should I care about generalisation?

Generalisation bounds are a safety check: they give a theoretical
guarantee on the performance of a learning algorithm on any unseen
data.

Generalisation bounds:

provide a computable control on the error on any unseen data with
prespecified confidence

explain why some specific learning algorithms actually work

and even lead to designing new algorithms which scale to more
complex settings
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Take-home message

PAC-Bayes is a generic framework to efficiently rethink generalisation for
numerous statistical learning algorithms. It leverages the flexibility of

Bayesian inference and allows to derive new learning algorithms.

ICML 2019 tutorial ”A Primer on PAC-Bayesian Learning”
https://bguedj.github.io/icml2019/

Survey in the Journal of the French Mathematical Society: Guedj (2019)

NIPS 2017 workshop ”(Almost) 50 Shades of Bayesian Learning:
PAC-Bayesian trends and insights”
https://bguedj.github.io/nips2017/
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Before PAC-Bayes
Single hypothesis h (building block):

with probability > 1 − δ, Rout(h) 6 Rin(h) +
√

1
2m log

( 1
δ

)
.

Finite function class H (worst-case approach):

w.p. > 1 − δ, ∀h ∈ H, Rout(h) 6 Rin(h) +
√

1
2m log

(
|H|
δ

)
Structural risk minimisation: data-dependent hypotheses hi

associated with prior weight pi

w.p. > 1 − δ, ∀hi ∈ H, Rout(hi) 6 Rin(hi) +

√
1

2m log
(

1
piδ

)
Uncountably infinite function class: VC dimension, Rademacher
complexity...

These approaches are suited to analyse the performance of individual
functions, and take some account of correlations.
−→ Extension: PAC-Bayes allows to consider distributions over
hypotheses.
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PAC-Bayes

”Prior”: exploration mechanism of H
”Posterior” is the twisted prior after confronting with data
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PAC-Bayes bounds vs. Bayesian inference

Prior P, posterior Q � P. Define the risk of a distribution:

Rin(Q) ≡
∫
H Rin(h) dQ(h) Rout(Q) ≡

∫
H Rout(h) dQ(h)

Kullback-Leibler divergence KL(Q‖P) = E
h∼Q

ln Q(h)
P(h) .

Prior
• PAC-Bayes: bounds hold for any distribution
• Bayes: prior choice impacts inference

Posterior
• PAC-Bayes: bounds hold for any distribution
• Bayes: posterior uniquely defined by prior and statistical model

Data distribution
• PAC-Bayes: bounds hold for any distribution
• Bayes: statistical modelling choices impact inference
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A classical PAC-Bayesian bound

Pre-history: PAC analysis of Bayesian estimators
Shawe-Taylor and Williamson (1997)

Birth: PAC-Bayesian bound
McAllester (1998, 1999)

Prototypical bound

For any prior P, any δ ∈ (0, 1], we have

Pm

∀Q onH : Rout(Q) 6 Rin(Q) +

√
KL(Q‖P) + ln 2

√
m
δ

2m

 > 1 − δ ,
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PAC-Bayes-driven learning algorithms
With an arbitrarily high probability and for any posterior distribution Q,

Error on unseen data 6 Error on sample+ complexity term

Rout(Q) 6 Rin(Q) + F (Q, ·)

This defines a principled strategy to obtain new learning algorithms:

h ∼ Q?

Q? ∈ arg inf
Q�P

{
Rin(Q) + F (Q, ·)

}
(optimisation problem which can be solved or approximated by
[stochastic] gradient descent-flavoured methods, Monte Carlo Markov
Chain, variational inference...)

SVMs, KL-regularized Adaboost, exponential weights are all minimisers
of PAC-Bayes bounds.
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Variational definition of KL-divergence (Csiszár, 1975; Donsker and
Varadhan, 1975; Catoni, 2004).

Let (A,A) be a measurable space.

(i) For any probability P on (A,A) and any measurable function
φ : A→ R such that

∫
(exp ◦φ)dP <∞,

log

∫
(exp ◦φ)dP = sup

Q�P

{∫
φdQ −KL(Q,P)

}
.

(ii) If φ is upper-bounded on the support of P, the supremum is
reached for the Gibbs distribution G given by

dG
dP

(a) =
exp ◦φ(a)∫
(exp ◦φ)dP

, a ∈ A.
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log
∫
(exp ◦φ)dP = sup

Q�P

{∫
φdQ −KL(Q,P)

}
, dG

dP = exp◦φ∫
(exp◦φ)dP .

Proof: let Q � P and P � Q.

−KL(Q,G) = −

∫
log

(
dQ
dP

dP
dG

)
dQ

= −

∫
log

(
dQ
dP

)
dQ +

∫
log

(
dG
dP

)
dQ

= −KL(Q,P) +

∫
φdQ − log

∫
(exp ◦φ) dP.

KL(·, ·) is non-negative, Q 7→ −KL(Q,G) reaches its max. in Q = G:

0 = sup
Q�P

{∫
φdQ −KL(Q,P)

}
− log

∫
(exp ◦φ) dP.

Let λ > 0 and take φ = −λRin,

Qλ ∝ exp (−λRin)P = arg inf
Q�P

{
Rin(Q) +

KL(Q,P)

λ

}
.
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Recap

What we’ve seen so far

Statistical learning theory is about high confidence control of
generalisation

PAC-Bayes is a generic, powerful tool to derive generalisation
bounds...

... and invent new learning algorithms with a Bayesian flavour

PAC-Bayes mixes tools from statistics, probability theory,
optimisation, and is now quickly re-emerging as a key theory and
practical framework in machine learning

What is coming next

What we’ve been up to with PAC-Bayes recently!
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Part II
News from the PAC-Bayes frontline

Alquier and Guedj (2018). Simpler PAC-Bayesian bounds for hostile data, Machine Learning.

Mhammedi, Grünwald and Guedj (2019). PAC-Bayes Un-Expected Bernstein Inequality, NeurIPS 2019.

Letarte, Germain, Guedj and Laviolette (2019). Dichotomize and generalize: PAC-Bayesian binary activated deep neural
networks, NeurIPS 2019.

Nozawa, Germain and Guedj (2020). PAC-Bayesian contrastive unsupervised representation learning, UAI 2020.

Haddouche, Guedj, Rivasplata and Shawe-Taylor (2020). PAC-Bayes unleashed: generalisation bounds with unbounded
losses, preprint.

Cantelobre, Guedj, Maria-Ortiz and Shawe-Taylor (2020). A PAC-Bayesian Perspective on Structured Prediction with Implicit
Loss Embeddings, preprint.

Mhammedi, Guedj and Williamson (2020). PAC-Bayesian Bound for the Conditional Value at Risk, NeurIPS 2020 (spotlight).
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Learning with non-iid or heavy-tailed data

Alquier and Guedj (2018)

No iid or bounded loss assumptions. For any integer q,

Mq :=

∫
E (|Rin(h) − Rout(h)|q) dP(h).

Csiszár f -divergence: let f be a convex function with f (1) = 0,

Df (Q,P) =

∫
f
(
dQ
dP

)
dP

when Q � P and Df (Q,P) = +∞ otherwise.

The KL is given by the special case KL(Q‖P) = Dx log(x)(Q,P).
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PAC-Bayes with f -divergences
Fix p > 1, q = p

p−1 , δ ∈ (0, 1) and let φp : x 7→ xp. With probability at
least 1 − δ we have for any distribution Q

|Rout(Q) − Rin(Q)| 6

(
Mq

δ

) 1
q (

Dφp−1(Q,P) + 1
) 1

p .

The bound decouples
the moment Mq (which depends on the distribution of the data)
and the divergence Dφp−1(Q,P) (measure of complexity).

Corolloray: with probability at least 1 − δ, for any Q,

Rout(Q) 6 Rin(Q) +

(
Mq

δ

) 1
q (

Dφp−1(Q,P) + 1
) 1

p .

Again, strong incitement to define the ”optimal” posterior as the
minimizer of the right-hand side!

For p = q = 2, w.p. > 1 − δ, Rout(Q) 6 Rin(Q) +

√
V

mδ

∫ (
dQ
dP

)2
dP.
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Proof
Let ∆(h) := |Rin(h) − Rout(h)|.∣∣∣∣∫ RoutdQ −

∫
RindQ

∣∣∣∣
Jensen 6

∫
∆dQ

Change of measure =

∫
∆
dQ
dP

dP

Hölder 6

(∫
∆qdP

) 1
q
(∫ (

dQ
dP

)p

dP
) 1

p

Markov 6
1−δ

(
E
∫
∆qdP
δ

) 1
q
(∫ (

dQ
dP

)p

dP
) 1

p

=

(
Mq

δ

) 1
q (

Dφp−1(Q,P) + 1
) 1

p .
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Binary Activated Neural Networks
x ∈ Rd0

y ∈ {−1, 1}

Architecture:

L fully connected layers

dk denotes the number of neurons of
the k th layer

sgn(a) = 1 if a > 0 and sgn(a) = −1
otherwise

Parameters:

Wk ∈ Rdk×dk−1 denotes the weight
matrices.

θ= vec
(
{Wk }

L
k=1

)
∈RD

x1 · · · xd

sgn sgn sgn

sgn sgn sgn

sgn

Prediction

fθ(x) = sgn
(
wLsgn

(
WL−1sgn

(
. . . sgn

(
W1x

))))
,
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Building block: one layer (aka linear predictor)

Letarte et al. (2019)

Model fw(x)
def
= sgn(w · x), with w ∈ Rd .

Linear classifiers Fd
def
= {fv|v ∈ Rd }

Predictor Fw(x)
def
= Ev∼Qw fv(x) = erf

(
w·x√
d‖x‖

)
Sampling + closed form of the KL + a few
other tricks + extension to an arbitrary number
of layers

2 0 2
1.0

0.5

0.0

0.5

1.0 erf(x)
tanh(x)
sgn(x)

x1 x2 · · · xd

sgn
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Generalisation bound

Let Fθ denote the network with parameter θ. With probability at least
1 − δ, for any θ ∈ RD

Rout(Fθ) 6

inf
C>0

{
1

1 − e−C

(
1 − exp

(
−CRin(Fθ) −

KL(θ, θ0) + log 2
√

m
δ

m

)) }
.
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Numerical experiments

Model name Cost function Train split Valid split Model selection Prior

MLP–tanh linear loss, L2 regularized 80% 20% valid linear loss -
PBGNet` linear loss, L2 regularized 80% 20% valid linear loss random init
PBGNet PAC-Bayes bound 100 % - PAC-Bayes bound random init

PBGNetpre
– pretrain linear loss (20 epochs) 50% - - random init
– final PAC-Bayes bound 50% - PAC-Bayes bound pretrain

Dataset
MLP–tanh PBGNet` PBGNet PBGNetpre

Rin Rout Rin Rout Rin Rout Bound Rin Rout Bound

ads 0.021 0.037 0.018 0.032 0.024 0.038 0.283 0.034 0.033 0.058
adult 0.128 0.149 0.136 0.148 0.158 0.154 0.227 0.153 0.151 0.165
mnist17 0.003 0.004 0.008 0.005 0.007 0.009 0.067 0.003 0.005 0.009
mnist49 0.002 0.013 0.003 0.018 0.034 0.039 0.153 0.018 0.021 0.030
mnist56 0.002 0.009 0.002 0.009 0.022 0.026 0.103 0.008 0.008 0.017
mnistLH 0.004 0.017 0.005 0.019 0.071 0.073 0.186 0.026 0.026 0.033
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An attempt at summarising my research

Quest for generalisation guarantees (about half via PAC-Bayes)

Directions:

Generic bounds (relaxing assumptions such as iid or boundedness,
new concentration inequalities, . . . )

Tight bounds for specific algorithms (deep neural networks, NMF,
. . . )

Towards new measures of performance (CVaR, ranking, contrastive
losses, . . . )

Coupling theory and implemented algorithms: bound-driven
algorithms

Applications (providing guidelines to machine learning users,
sustainable / frugal machine learning)
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Thanks!

What this talk could have been about...

Tighter PAC-Bayes bounds (Mhammedi et al., 2019)

PAC-Bayes for conditional value at risk (Mhammedi
et al., 2020)

PAC-Bayes-driven deep neural networks (Biggs and
Guedj, 2020)

PAC-Bayes and robust learning (Guedj and Pujol, 2019)

PAC-Bayes for unbounded losses (Haddouche et al.,
2020a)

PAC-Bayesian online clustering (Li et al., 2018)

PAC-Bayesian bipartite ranking (Guedj and Robbiano,
2018)

Online k -means clustering (Cohen-Addad et al., 2021)

Sequential learning of principal curves (Guedj and Li,
2018)

PAC-Bayes for heavy-tailed, dependent data (Alquier
and Guedj, 2018)

Stability and generalisation (Celisse and Guedj, 2016)

Additive regression (Guedj and Alquier, 2013)

Contrastive unsupervised learning (Nozawa et al., 2020)

Generalisation bounds for structured prediction
(Cantelobre et al., 2020)

Image denoising (Guedj and Rengot, 2020)

Matrix factorisation (Alquier and Guedj, 2017; Chrétien
and Guedj, 2020)

Preventing model overfitting (Zhang et al., 2019)

Decentralised learning with aggregation (Klein et al.,
2019)

Ensemble learning and nonlinear aggregation (Biau
et al., 2016) in Python (Guedj and Srinivasa Desikan,
2018, 2020)

Identifying subcommunities in social networks and
application to forecasting elections (Vendeville et al.,
2021, 2020)

Upper and lower bounds for kernel PCA (Haddouche
et al., 2020b)

Prediction with multi-task Gaussian processes (Leroy
et al., 2020b,a)

+ a few more in the pipe, soon on arXiv
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