On generalisation and learning: A (condensed) primer on PAC-Bayes *followed by* News from the PAC-Bayes frontline

2nde Journée MAS-MODE, SMAI March 7, 2022

Alan Turing Institute

The

The Inria-London Programme

In a nutshell

Research at the crossroads of statistics, probability, machine learning, optimisation. "Mathematical foundations of machine learning" says it all!

Statistical learning theory, PAC-Bayes, computational statistics, theoretical analysis of deep learning and representation learning...

Personal obsession: generalisation.

Learning is to be able to generalise

[Credits: Wikipedia]

From examples, what can a system learn about the underlying phenomenon?

Memorising the already seen data is usually bad \longrightarrow overfitting

Generalisation is the ability to 'perform' well on unseen data.

Is deep learning breaking statistical learning theory?

Neural networks architectures trained on massive datasets achieve zero training error which does not bode well for their performance: this strongly suggests overfitting...

... yet they also achieve remarkably low errors on test sets!

A famous plot...

(Belkin et al., 2019)

... which might just be half of the picture

⁽Belkin et al., 2019)

A tale of two learners

First contender: a deep neural network

Typically identifies a specific item (say, a horse) in an image with accuracy > 99%.

Training samples: millions of annotated images of horses – GPU-expensive training and significant environmental footprint.

A tale of two learners

Second contender: the next iteration

Identify horses with 100% accuracy. Also very good at transferring to *e.g.* zebras

Training samples: a handful of children books, bedtime stories and (poorly executed) drawings.

Also expensive training.

Learning is to be able to generalise...

... but not from scratch! Tackling each learning task as a fresh draw unlikely to be efficient – must not be blind to context.

Need to incorporate structure / semantic information / implicit representations of the "sensible" world.

Should lead to better algorithms design (more "intelligent", frugal / resources-efficient, etc.)

(if you're interested, get in touch!)

Part I

A Primer on PAC-Bayesian Learning (short version of our ICML 2019 tutorial)

https://bguedj.github.io/icml2019/index.html

The simplest setting

Learning algorithm $A : \mathcal{Z}^m \to \mathcal{H}$

• $\mathcal{I} = \mathcal{X} \times \mathcal{Y}$ • \mathcal{H} = hypothesis class

Training set (aka sample): $S_m = ((X_1, Y_1), \dots, (X_m, Y_m))$ a finite sequence of input-output examples.

- Data-generating distribution \mathbb{P} over \mathbb{Z} .
- Learner doesn't know
 P, only sees the training set.
- The training set examples are *i.i.d.* from \mathbb{P} : $S_m \sim \mathbb{P}^m$

Statistical Learning Theory is about high confidence

For a fixed algorithm, function class and sample size, generating random samples \longrightarrow distribution of test errors

- Focusing on the mean of the error distribution?
 - > can be misleading: learner only has one sample
- Statistical Learning Theory: tail of the distribution
 Finding bounds which hold with high probability over random samples of size m
- Compare to a statistical test at 99% confidence level
 chances of the conclusion not being true are less than 1%
- PAC: probably approximately correct (Valiant, 1984) Use a 'confidence parameter' δ : $\mathbb{P}^m[\text{large error}] \leq \delta$ δ is the probability of being misled by the training set
- Hence high confidence: \mathbb{P}^m [approximately correct] $\ge 1 \delta$

What to achieve from the sample?

Use the available sample to:

- 1 learn a predictor
- 2 certify the predictor's performance

Learning a predictor:

- algorithm driven by some learning principle
- informed by prior knowledge resulting in inductive bias

Certifying performance:

- · what happens beyond the training set
- generalisation bounds

Actually these two goals interact with each other!

Generalisation

Loss function $\ell(h(X), Y)$ to measure the discrepancy between a predicted output h(X) and the true output Y.

Empirical risk: (in-sample)

$$R_{\rm in}(h) = \frac{1}{m} \sum_{i=1}^m \ell(h(X_i), Y_i)$$

Theoretical risk: (out-of-sample)

```
R_{\rm out}(h) = \mathbb{E}\big[\ell(h(X), Y)\big]
```

If predictor h does well on the in-sample (X, Y) pairs...

...will it still do well on out-of-sample pairs?

Generalisation gap: $\Delta(h) = R_{out}(h) - R_{in}(h)$

Upper bounds: with high probability $\Delta(h) \leq \epsilon(m, \delta)$

Flavours:

- distribution-free
- algorithm-free

- distribution-dependent
- algorithm-dependent

The PAC (Probably Approximately Correct) framework

In a nutshell: with high probability, the generalisation error of an hypothesis *h* is at most something we can control and even compute. For any $\delta > 0$,

$$\mathbb{P}\left[R_{\mathrm{out}}(h)\leqslant R_{\mathrm{in}}(h)+\epsilon(m,\delta)\right]\geqslant 1-\delta.$$

Think of $\epsilon(m, \delta)$ as Complexity $\times \frac{\log \frac{1}{\delta}}{\sqrt{m}}$.

This is about high confidence statements on the tail of the distribution of test errors (compare to a statistical test at level $1 - \delta$).

PAC-Bayes is about PAC generalisation bounds for *distributions over hypotheses*.

"Why should I care about generalisation?"

Generalisation bounds are a safety check: they give a theoretical guarantee on the performance of a learning algorithm on any unseen data.

Generalisation bounds:

- provide a computable control on the error on any unseen data with prespecified confidence
- explain why some specific learning algorithms actually work
- and even lead to designing new algorithms which scale to more complex settings

PAC-Bayes is a generic framework to efficiently rethink generalisation for numerous statistical learning algorithms. It leverages the flexibility of Bayesian inference and allows to derive new learning algorithms.

ICML 2019 tutorial "A Primer on PAC-Bayesian Learning" https://bguedj.github.io/icml2019/

Survey in the Journal of the French Mathematical Society: Guedj (2019)

NeurIPS 2017 workshop "(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights"

https://bguedj.github.io/nips2017/

Before PAC-Bayes

■ Single hypothesis *h* (building block): with probability ≥ 1 − δ , $R_{out}(h) \leq R_{in}(h) + \sqrt{\frac{1}{2m} \log(\frac{1}{\delta})}$.

Finite function class \mathcal{H} (worst-case approach):

w.p. $\geq 1 - \delta$, $\forall h \in \mathcal{H}$, $R_{out}(h) \leq R_{in}(h) + \sqrt{\frac{1}{2m} \log\left(\frac{|\mathcal{H}|}{\delta}\right)}$

Structural risk minimisation: data-dependent hypotheses h_i associated with prior weight p_i

w.p. $\geq 1 - \delta$, $\forall h_i \in \mathcal{H}$, $R_{out}(h_i) \leq R_{in}(h_i) + \sqrt{\frac{1}{2m} \log\left(\frac{1}{p_i \delta}\right)}$

Uncountably infinite function class: VC dimension, Rademacher complexity...

These approaches are suited to analyse the performance of individual functions, and take some account of correlations.

 \longrightarrow Extension: PAC-Bayes allows to consider $\emph{distributions}$ over hypotheses.

PAC-Bayes

Prior	Bayesian inference Unique Statistical modelling (likelihood)	Posterior
	PAC-Bayes	
Any distribution not depending on data	Model-free	Any distribution
	Inspired by the Bayesian update principle - Only depends on loss	(possibly) depending on data

"Prior": exploration mechanism of ${\mathcal H}$ "Posterior" is the twisted prior after confronting with data

PAC-Bayes bounds vs. Bayesian inference

Prior *P*, posterior $Q \gg P$. Define the risk of a distribution:

 $R_{\rm in}(Q) \equiv \int_{\mathcal{H}} R_{\rm in}(h) \, dQ(h) \qquad R_{
m out}(Q) \equiv \int_{\mathcal{H}} R_{
m out}(h) \, dQ(h)$

Kullback-Leibler divergence $\operatorname{KL}(Q \| P) = \underset{h \sim Q}{\mathsf{E}} \ln \frac{Q(h)}{P(h)}$.

- Prior
 - PAC-Bayes: bounds hold for any distribution
 - · Bayes: prior choice impacts inference
- Posterior
 - PAC-Bayes: bounds hold for any distribution
 - · Bayes: posterior uniquely defined by prior and statistical model
- Data distribution
 - PAC-Bayes: bounds hold for any distribution
 - · Bayes: statistical modelling choices impact inference

A classical PAC-Bayesian bound

Pre-history: PAC analysis of Bayesian estimators (Shawe-Taylor and Williamson, 1997)

Birth: PAC-Bayesian bound (McAllester, 1998, 1999)

Prototypical bound

For any prior *P*, any $\delta \in (0, 1]$, we have

$$\mathbb{P}^{m}\left(\forall Q \text{ on } \mathcal{H}: R_{\text{out}}(Q) \leqslant R_{\text{in}}(Q) + \sqrt{\frac{\text{KL}(Q \| P) + \ln \frac{2\sqrt{m}}{\delta}}{2m}}\right) \geq 1 - \delta,$$

PAC-Bayes-driven learning algorithms

With an arbitrarily high probability and for any posterior distribution Q,

Error on unseen data \leq Error on sample + complexity term $R_{\text{out}}(Q) \leq R_{\text{in}}(Q) + F(Q, \cdot)$

This defines a principled strategy to obtain new learning algorithms:

$$h \sim Q^{\star}$$

 $Q^{\star} \in \operatorname*{arg\,inf}_{Q \ll P} \left\{ R_{\mathrm{in}}(Q) + F(Q, \cdot) \right\}$

(optimisation problem which can be solved or approximated by [stochastic] gradient descent-flavoured methods, Monte Carlo Markov Chain, variational inference...)

SVMs, KL-regularized Adaboost, exponential weights are all minimisers of PAC-Bayes bounds.

Variational definition of KL-divergence (Csiszár, 1975; Donsker and Varadhan, 1975; Catoni, 2004).

Let (A, \mathcal{A}) be a measurable space.

(i) For any probability *P* on (*A*, *A*) and any measurable function $\phi : A \to \mathbb{R}$ such that $\int (\exp \circ \phi) dP < \infty$,

$$\log \int (\exp \circ \phi) \mathrm{d} P = \sup_{Q \ll P} \left\{ \int \phi \mathrm{d} Q - \mathrm{KL}(Q, P) \right\}.$$

(ii) If ϕ is upper-bounded on the support of *P*, the supremum is reached for the Gibbs distribution *G* given by

$$\frac{\mathrm{d} \boldsymbol{G}}{\mathrm{d} \boldsymbol{P}}(\boldsymbol{a}) = \frac{\exp\circ\varphi(\boldsymbol{a})}{\int (\exp\circ\varphi)\mathrm{d} \boldsymbol{P}}, \quad \boldsymbol{a} \in \boldsymbol{A}.$$

$$\begin{split} \log \int (\exp \circ \varphi) \mathrm{d} P &= \sup_{Q \ll P} \left\{ \int \varphi \mathrm{d} Q - \mathrm{KL}(Q, P) \right\}, \quad \frac{\mathrm{d} G}{\mathrm{d} P} = \frac{\exp \circ \varphi}{\int (\exp \circ \varphi) \mathrm{d} P}. \end{split}$$
Proof: let $Q \ll P$.

$$\begin{split} -\operatorname{KL}(Q,G) &= -\int \log\left(\frac{\mathrm{d}Q}{\mathrm{d}P}\frac{\mathrm{d}P}{\mathrm{d}G}\right)\mathrm{d}Q \\ &= -\int \log\left(\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\mathrm{d}Q + \int \log\left(\frac{\mathrm{d}G}{\mathrm{d}P}\right)\mathrm{d}Q \\ &= -\operatorname{KL}(Q,P) + \int \varphi \mathrm{d}Q - \log\int \left(\exp\circ\varphi\right)\mathrm{d}P. \end{split}$$

 $\mathrm{KL}(\cdot, \cdot)$ is non-negative, $Q \mapsto -\mathrm{KL}(Q, G)$ reaches its max. in Q = G:

$$\mathbf{0} = \sup_{\mathbf{Q} \ll \mathbf{P}} \left\{ \int \phi \mathrm{d}\mathbf{Q} - \mathrm{KL}(\mathbf{Q}, \mathbf{P}) \right\} - \log \int (\exp \circ \phi) \, \mathrm{d}\mathbf{P}.$$

Let $\lambda > 0$ and take $\varphi = -\lambda R_{in}$,

$$Q_{\lambda} \propto \exp\left(-\lambda R_{\mathrm{in}}
ight) P = \operatorname*{arg\,inf}_{Q \ll P} \left\{ R_{\mathrm{in}}(Q) + \dfrac{\mathrm{KL}(Q, P)}{\lambda}
ight\}.$$

Recap

What we've seen so far

- Statistical learning theory is about high confidence control of generalisation
- PAC-Bayes is a generic, powerful tool to derive generalisation bounds...
- ... and invent new learning algorithms with a Bayesian flavour
- PAC-Bayes mixes tools from statistics, probability theory, optimisation, and is now quickly re-emerging as a key theory and practical framework in machine learning (and in particular deep learning)

What is coming next

■ What we've been up to with PAC-Bayes recently!

Part II

News from the PAC-Bayes frontline

- Guedj and Robbiano (2018). PAC-Bayesian high dimensional bipartite ranking, Journal of Statistical Planning and Inference.
- Alquier and Guedj (2018). Simpler PAC-Bayesian bounds for hostile data, Machine Learning.
- Mhammedi, Grünwald and Guedj (2019). PAC-Bayes Un-Expected Bernstein Inequality, NeurIPS 2019.
- Letarte, Germain, Guedj and Laviolette (2019). Dichotomize and generalize: PAC-Bayesian binary activated deep neural networks, NeurIPS 2019.
- Nozawa, Germain and Guedj (2020). PAC-Bayesian contrastive unsupervised representation learning, UAI 2020.
- Cantelobre, Guedj, Perez-Ortiz and Shawe-Taylor (2020). A PAC-Bayesian Perspective on Structured Prediction with Implicit Loss Embeddings, preprint.
- Mhammedi, Guedj and Williamson (2020). PAC-Bayesian Bound for the Conditional Value at Risk, NeurIPS 2020 (spotlight).
- Haddouche, Guedj, Rivasplata and Shawe-Taylor (2021). PAC-Bayes unleashed: generalisation bounds with unbounded losses, Entropy.
- Biggs and Guedj (2021). Differentiable PAC-Bayes Objectives with Partially Aggregated Neural Networks, Entropy.
- Zantedeschi, Viallard, Morvant, Emonet, Habrard, Germain and Guedj (2021). Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound, NeurIPS 2021.
- Perez-Ortiz, Rivasplata, Guedj, Gleeson, Zhang, Shawe-Taylor, Bober and Kittler (2021). Learning PAC-Bayes Priors for Probabilistic Neural Networks, preprint.
- Biggs and Guedj (2022). On Margins and Derandomisation in PAC-Bayes, AISTATS 2022.
- Cherief-Abdellatif, Shi, Doucet and Guedj (2022). On PAC-Bayesian reconstruction guarantees for VAEs, AISTATS 2022.
- Biggs and Guedj (2022). Non-Vacuous Generalisation Bounds for Shallow Neural Networks, preprint.
- Adams, Shawe-Taylor and Guedj (2022). Controlling Confusion via Generalisation Bounds, preprint.
- Picard-Weibel and Guedj (2022). On change of measure inequalities for f-divergences, preprint.

Some of my partners in crime

On Margins and Derandomisation in PAC-Bayes

In 3 weeks at AISTATS 2022

We provide a unified framework for derandomising PAC-Bayes bounds with margins, leading to new bounds or greatly simplified proofs for

- L_2 and L_1 normed linear predictors,
- Linear predictors with a learned randomised feature space,
- One-hidden-layer neural networks with erf activations,
- Deep ReLU networks.

Key idea: PAC-Bayes bounds are (mostly) SOTA, but apply for non-deterministic randomised predictions. Large margin deterministic predictors give similar predictive performance to their randomised counterparts. SHEL: An unusual neural architecture Binary $\mathcal{Y} = \{\pm 1\}$ or multiclass classification $\mathcal{Y} = \{1, \ldots, c\}$. Predictors f are score-valued: $f(x) \in \mathbb{R}^{c}$ (multiclass) or $f(x) \in \mathbb{R}$ (binary). We define the binary margin $M_{\text{bin}}(f, (x, y)) = yf(x)$ and multiclass margin $M_{\text{multi}}(f, (x, y)) = f(x)[y] \max_{k \neq v} f(x)[k].$ $R_{\text{out}}(f) = \Pr\{(x, y) : M(f, (x, y)) \leq 0\},\$ $R_{\mathrm{in},\gamma}(f) = m^{-1} | \{ (x, y) \in S : M(f, (x, y)) \leq S \}$ γ

erf erf erf erf

SHEL network: elementwise error function activations $F_{U,V}(x) = V \operatorname{erf}(Ux)$. **Theorem.** For SHEL network with *K* hidden units,

$$R_{\text{out}}(F_{U,V}) \leqslant R_{\text{in},\gamma}(F_{U,V}) + \widetilde{\mathcal{O}}\left(\frac{\sqrt{K}}{\gamma\sqrt{m}}(\|V\|_{\max}\|U-U^0\|_F + \|V\|_F)\right)$$

On PAC-Bayesian reconstruction guarantees for VAEs

In 3 weeks at AISTATS 2022

 $x \rightarrow \text{encoder} \rightarrow \text{Latent representation} \rightarrow \text{decoder} \rightarrow \widehat{x} = d(e(x))$

[Credits: Danijar Hafner]

An attempt at summarising my research

Quest for generalisation guarantees (about half via PAC-Bayes)

Directions:

- Generic bounds (relaxing assumptions such as iid or boundedness, new concentration inequalities, ...)
- Tight bounds for self-certifying specific algorithms (deep neural networks, NMF, ...)
- Towards new measures of performance (CVaR, ranking, contrastive losses, ...)
- Coupling theory and implemented algorithms: bound-driven algorithms
- Impact beyond learning theory (providing guidelines to machine learning users, sustainable / frugal machine learning)

Thanks!

What this talk could have been about...

- Tighter PAC-Bayes bounds (Mhammedi et al., 2019)
- PAC-Bayes for conditional value at risk (Mhammedi et al., 2020)
- PAC-Bayes-driven deep neural networks (Biggs and Guedj, 2021a,b; Perez-Ortiz et al., 2021a,b)
- PAC-Bayes and robust learning (Guedj and Pujol, 2021)
- PAC-Bayes for unbounded losses (Haddouche et al., 2021)
- PAC-Bayesian online clustering (Li et al., 2018)
- PAC-Bayesian bipartite ranking (Guedj and Robbiano, 2018)
- Online k-means clustering (Cohen-Addad et al., 2021)
- Sequential learning of principal curves (Guedj and Li, 2021)
- PAC-Bayes for heavy-tailed, dependent data (Alquier and Guedj, 2018)
- Stability and generalisation (Celisse and Guedj, 2016)
- Additive regression (Guedj and Alquier, 2013)
- Stochastic majority votes (Zantedeschi et al., 2021)

+ a few more in the pipe, soon on arXiv

https://bguedj.github.io

- Contrastive unsupervised learning (Nozawa et al., 2020)
- Generalisation bounds for structured prediction (Cantelobre et al., 2020)
- MMD aggregated two sample tests (Schrab et al., 2021)
- Image denoising (Guedj and Rengot, 2020)
- Matrix factorisation (Alquier and Guedj, 2017; Chrétien and Guedj, 2020)
- Preventing model overfitting (Zhang et al., 2019)
- Decentralised learning with aggregation (Klein et al., 2020)
- Ensemble learning and nonlinear aggregation (Biau et al., 2016) in Python (Guedj and Srinivasa Desikan, 2018, 2020)
- Identifying subcommunities in social networks and application to forecasting elections (Vendeville et al., 2021a,b)
- Upper and lower bounds for kernel PCA (Haddouche et al., 2020)
- Prediction with multi-task Gaussian processes (Leroy et al., 2020b,a)

References I

- P. Alquier and B. Guedj. An oracle inequality for quasi-Bayesian nonnegative matrix factorization. Mathematical Methods of Statistics, 26(1):55–67, 2017. ISSN 1934-8045. doi: 10.3103/S1066530717010045. URL https://arxiv.org/abs/1601.01345.
- P. Alquier and B. Guedj. Simpler PAC-Bayesian bounds for hostile data. Machine Learning, 107(5):887–902, 2018. ISSN 1573-0565. doi: 10.1007/s10994-017-5690-0. URL https://doi.org/10.1007/s10994-017-5690-0.
- M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and the classical bias-variance trade-off. *Proceedings of the National Academy of Sciences*, 116(32):15849–15854, 2019. ISSN 0027-8424. doi: 10.1073/pnas.1903070116. URL https://www.pnas.org/content/116/32/15849.
- G. Biau, A. Fischer, B. Guedj, and J. D. Malley. COBRA: A combined regression strategy. *Journal of Multivariate Analysis*, 146: 18–28, 2016. ISSN 0047-259X. doi: https://doi.org/10.1016/j.jmva.2015.04.007. URL http://www.sciencedirect.com/science/article/pii/S0047259X15000950. Special Issue on Statistical Models and Methods for High or Infinite Dimensional Spaces.
- F. Biggs and B. Guedj. Differentiable PAC-Bayes objectives with partially aggregated neural networks. *Entropy*, 23(10), 2021a. ISSN 1099-4300. doi: 10.3390/e23101280. URL https://www.mdpi.com/1099-4300/23/10/1280.
- F. Biggs and B. Guedj. On margins and derandomisation in PAC-Bayes. Submitted., 2021b. URL https://arxiv.org/abs/2107.03955.
- T. Cantelobre, B. Guedj, M. Pérez-Ortiz, and J. Shawe-Taylor. A PAC-Bayesian perspective on structured prediction with implicit loss embeddings. Submitted., 2020. URL https://arxiv.org/abs/2012.03780.
- O. Catoni. Statistical Learning Theory and Stochastic Optimization. École d'Été de Probabilités de Saint-Flour 2001. Springer, 2004.
- A. Celisse and B. Guedj. Stability revisited: new generalisation bounds for the Leave-one-Out. Preprint., 2016. URL https://arxiv.org/abs/1608.06412.
- S. Chrétien and B. Guedj. Revisiting clustering as matrix factorisation on the Stiefel manifold. In LOD The Sixth International Conference on Machine Learning, Optimization, and Data Science, 2020. URL https://arxiv.org/abs/1903.04479.
- V. Cohen-Addad, B. Guedj, V. Kanade, and G. Rom. Online k-means clustering. In A. Banerjee and K. Fukumizu, editors, Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 1126–1134. PMLR, April 2021. URL http://proceedings.mlr.press/v130/cohen-addad21a.html.
- I. Csiszár. I-divergence geometry of probability distributions and minimization problems. Annals of Probability, 3:146–158, 1975.

References II

- M. D. Donsker and S. S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time. Communications on Pure and Applied Mathematics, 28, 1975.
- B. Guedj. A primer on PAC-Bayesian learning. In Proceedings of the second congress of the French Mathematical Society, volume 33, 2019. URL https://arxiv.org/abs/1901.05353.
- B. Guedj and P. Alquier. PAC-Bayesian estimation and prediction in sparse additive models. *Electron. J. Statist.*, 7:264–291, 2013. doi: 10.1214/13-EJS771. URL https://doi.org/10.1214/13-EJS771.
- B. Guedj and L. Li. Sequential learning of principal curves: Summarizing data streams on the fly. Accepted for publication at Entropy, 2021. URL https://arxiv.org/abs/1805.07418.
- B. Guedj and L. Pujol. Still no free lunches: the price to pay for tighter PAC-Bayes bounds. Accepted for publication at Entropy, 2021. URL https://arxiv.org/abs/1910.04460.
- B. Guedj and J. Rengot. Non-linear aggregation of filters to improve image denoising. In K. Arai, S. Kapoor, and R. Bhatia, editors, *Computing Conference*, pages 314–327. Springer International Publishing, 2020. ISBN 978-3-030-52246-9. doi: 10.1007/978-3-030-52246-9_22. URL https://arxiv.org/abs/1904.00865.
- B. Guedj and S. Robbiano. PAC-Bayesian high dimensional bipartite ranking. Journal of Statistical Planning and Inference, 196:70 86, 2018. ISSN 0378-3758. doi: https://doi.org/10.1016/j.jspi.2017.10.010. URL http://www.sciencedirect.com/science/article/pii/S0378375817301945.
- B. Guedj and B. Srinivasa Desikan. Pycobra: A Python toolbox for ensemble learning and visualisation. Journal of Machine Learning Research, 18(190):1-5, 2018. URL http://jmlr.org/beta/papers/v18/17-228.html.
- B. Guedj and B. Srinivasa Desikan. Kernel-based ensemble learning in Python. Information, 11(2):63, Jan 2020. ISSN 2078-2489. doi: 10.3390/info11020063. URL http://dx.doi.org/10.3390/info11020063.
- M. Haddouche, B. Guedj, O. Rivasplata, and J. Shawe-Taylor. Upper and lower bounds on the performance of Kernel PCA. Submitted., 2020. URL https://arxiv.org/abs/2012.10369.
- M. Haddouche, B. Guedj, O. Rivasplata, and J. Shawe-Taylor. PAC-Bayes unleashed: generalisation bounds with unbounded losses. Entropy, 23(10), 2021. ISSN 1099-4300. doi: 10.3390/e23101330. URL https://www.mdpi.com/1099-4300/23/10/1330.

References III

- J. Klein, M. Albardan, B. Guedj, and O. Colot. Decentralized learning with budgeted network load using Gaussian copulas and classifier ensembles. In P. Cellier and K. Driessens, editors, ECML-PKDD 2019. Machine Learning and Knowledge Discovery in Databases, pages 301–316. Springer International Publishing, 2020. ISBN 978-3-030-43823-4. doi: 10.1007/978-3-030-43823-4_26. URL https://link.springer.com/chapter/10.1007/2P78-3-030-43823-4_26.
- A. Leroy, P. Latouche, B. Guedj, and S. Gey. Cluster-specific predictions with multi-task Gaussian processes. Submitted., 2020a. URL https://arxiv.org/abs/2011.07866.
- A. Leroy, P. Latouche, B. Guedj, and S. Gey. MAGMA: Inference and prediction with multi-task Gaussian processes. Submitted., 2020b. URL https://arxiv.org/abs/2007.10731.
- L. Li, B. Guedj, and S. Loustau. A quasi-Bayesian perspective to online clustering. *Electron. J. Statist.*, 12(2):3071–3113, 2018. doi: 10.1214/18-EJS1479. URL https://doi.org/10.1214/18-EJS1479.
- D. McAllester. Some PAC-Bayesian theorems. In Proceedings of the International Conference on Computational Learning Theory (COLT), 1998.
- D. McAllester. Some PAC-Bayesian theorems. Machine Learning, 37, 1999.
- Z. Mhammedi, P. Grünwald, and B. Guedj. PAC-Bayes un-expected Bernstein inequality. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, [NeurIPS 2019], 8-14 December 2019, Vancouver, BC, Canada, pages 12180–12191, 2019. URL http://papers.nips.cc/paper/9387-pac-bayes-un-expected-bernstein-ineguality.

Mammadi B. Cuadi and B. C. Williamaan, DAC Bauasian baund for the conditional value at vick. In H. Lara

- Z. Mhammedi, B. Guedj, and R. C. Williamson. PAC-Bayesian bound for the conditional value at risk. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, [NeurIPS 2020], December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/d02e9bdc27a894e882fa0c9055c99722-Abstract.html.
- K. Nozawa, P. Germain, and B. Guedj. PAC-Bayesian contrastive unsupervised representation learning. In Conference on Uncertainty in Artificial Intelligence [UAI], 2020. URL https://arxiv.org/abs/1910.04464.
- M. Perez-Ortiz, O. Rivasplata, B. Guedj, M. Gleeson, J. Zhang, J. Shawe-Taylor, M. Bober, and J. Kittler. Learning PAC-Bayes priors for probabilistic neural networks. Submitted., 2021a. URL https://arxiv.org/abs/2109.10304.

References IV

- M. Perez-Ortiz, O. Rivasplata, E. Parrado-Hernandez, B. Guedj, and J. Shawe-Taylor. Progress in self-certified neural networks. In NeurIPS 2021 workshop Bayesian Deep Learning [BDL], 2021b. URL https://arxiv.org/abs/2111.07737.
- A. Schrab, I. Kim, M. Albert, B. Laurent, B. Guedj, and A. Gretton. MMD aggregated two-sample test. Submitted., 2021. URL https://arxiv.org/abs/2110.15073.
- J. Shawe-Taylor and R. C. Williamson. A PAC analysis of a Bayes estimator. In Proceedings of the 10th annual conference on Computational Learning Theory, pages 2–9. ACM, 1997. doi: 10.1145/267460.267466.
- L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.
- A. Vendeville, B. Guedj, and S. Zhou. Forecasting elections results via the voter model with stubborn nodes. Applied Network Science, 6, 2021a. doi: 10.1007/s41109-020-00342-7. URL https://arxiv.org/abs/2009.10627.
- A. Vendeville, B. Guedj, and S. Zhou. Towards control of opinion diversity by introducing zealots into a polarised social group. Accepted for publication at Complex Networks, 2021b. URL https://arxiv.org/abs/2006.07265.
- V. Zantedeschi, P. Viallard, E. Morvant, R. Emonet, A. Habrard, P. Germain, and B. Guedj. Learning stochastic majority votes by minimizing a PAC-Bayes generalization bound. Accepted for publication at NeurIPS, 2021. URL https://arxiv.org/abs/2106.12535.
- J. M. Zhang, M. Harman, B. Guedj, E. T. Barr, and J. Shawe-Taylor. Model validation using mutated training labels: An exploratory study. Submitted., 2019. URL https://arxiv.org/abs/1905.10201.