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Mathematical foundations of intelligence

Research at the crossroads of statistics, probability theory,
machine learning, optimisation. Mathematical foundations of
artificial intelligence is a pretty good tagline.

Keywords: statistical learning theory, PAC-Bayes, generalisation
bounds, concentration inequalities, computational statistics,
theoretical analysis of deep learning and in particular generative
models, information theory

Generalisation theory is all about understanding how to design
learning algorithm that learn well beyond training data.

In this talk I will present recent advances that move beyond
classical generalisation bounds, replacing KL divergences with
Wasserstein distances, and using comparators to make bounds
tighter.
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Outline

Generalisation in machine learning

Wasserstein-based deviation bounds

Comparators in generalisation bounds

Information theory and PAC-Bayes united
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Generalisation in machine learning



Learning is to be able to generalise

[Source: Wikipedia]

From examples, what can a
system learn about the
underlying phenomenon?

Memorising the already seen
data is usually bad (overfitting)

Generalisation is the ability to
’perform’ well on unseen data.
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The deep learning era puts generalisation on the spot

Neural networks architectures trained on massive datasets
achieve zero training error which strongly suggests to
statisticians like me they may overfit.

However they often achieve remarkably low errors on test sets –
hence the interest in generalisation bounds for deep networks.
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� Belkin et al., Reconciling modern machine-learning practice and the classical bias-variance trade-off, PNAS, 2019
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Why generalisation matters in machine learning

Let (Xi,Yi)
n
i=1 ∈ (X × Y)n be an iid sample drawn from some

distribution D⊗n, and let ℓ : Y × Y → [0,∞) be a loss function.
For any hypothesis h : X → Y ,

L̂(h) =
1
n

n∑
i=1

ℓ(h(Xi),Yi), L(h) = Eℓ(h(X),Y).

• How can we certify that a hypothesis with good
performance on training data has similarly good
performance on new, unseen data?

• When does a low training loss imply a low population loss?
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Typical approach: bound the generalisation gap. For a hypothesis
h, population loss L and training loss L̂, let

Γ(h) := L(h)− L̂(h)

denote the generalisation gap. We want

L(h) = L̂(h) + L(h)− L̂(h) = L̂(h) + Γ(h) ≤ L̂(h) + Bound,

This motivates generalisation bounds: Γ(h) ≤ Bound, with
several flavours

• hypothesis-dependent vs. hypothesis-free

• (data generating) distribution-dependent vs. distribution-free

• in expectation

• with (arbitrarily) high probability
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The PAC (Probably Approximately Correct) framework

� Valiant, A theory of the learnable, Communications of the ACM, 1984

P[large error] ≤ δ. The ‘confidence parameter’ δ can be thought
of as the probability of being misled by the training set.

Hence high confidence: P[approximately correct] ≥ 1− δ.

With high probability, the generalisation gap of an hypothesis h is
at most something we can control and even compute. For any
δ > 0,

P
[
L(h) ≤ L̂(h) + B(n, δ)

]
≥ 1− δ.

Think of B(n, δ) as Complexity × log 1/δ√
n . PAC bounds are high

confidence statements on the tail of the distribution of
population losses (think of a statistical test at level 1− δ).
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PAC-Bayes

PAC-Bayes is about PAC generalisation bounds for distributions
over hypotheses. Let Qn denote a posterior distribution that
produces hypotheses,

L̂(Qn) = Eh∼Qn L̂(h) =
1
n

n∑
i=1

Eh∼Qnℓ(h(Xi),Yi),

L(Qn) = Eh∼QnL(h) = Eh∼QnEℓ(h(X),Y).

We compare Qn to a prior Q0, typically through the KL divergence
KL(Qn||Q0) = Eh∼Qn log

Qn(h)
Q0(h)

.
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What makes PAC-Bayes a post-Bayes approach?

• Prior
• PAC-Bayes: bounds hold for any distribution
• Bayes: prior choice impacts inference

• Posterior
• PAC-Bayes: bounds hold for any distribution
• Bayes: posterior uniquely defined by prior and statistical
model

• Data distribution
• PAC-Bayes: bounds hold for any distribution
• Bayes: statistical modelling choices impact inference
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A PAC-Bayesian bound

� Shawe-Taylor and Williamson, A PAC analysis of a Bayes estimator, COLT, 1997

� McAllester, Some PAC-Bayesian theorems, COLT, 1998

� McAllester, PAC-Bayesian model averaging, COLT, 1999

Prototypical bound
For any prior Q0, any δ ∈ (0, 1], we have

P

∀Qn : L(Qn) ≤ L̂(Qn) +

√
KL(Qn∥Q0) + log(2

√
n/δ)

2n

 ≥ 1− δ.

11 / 51



What is this useful for?

From
P
[
L(h) ≤ L̂(h) + B(n, δ,Qn)

]
≥ 1− δ,

• We can compute the numerical value of the bound
B(n, δ,Qn),

• We can train new algorithms and derive new hypotheses,
with

Q⋆ ∈ arg inf
Qn≪Q0

{
L̂(Qn) + B(n, δ,Qn)

}
(optimisation problem which can be solved or approximated by
[stochastic] gradient descent-flavoured methods, Monte Carlo
Markov Chain, variational inference...)
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Variational definition of the KL-divergence

� Csiszár., I-divergence geometry of probability distributions and minimization problems, Annals of Probability, 1975

� Donsker and Varadhan, Asymptotic evaluation of certain Markov process expectations for large time,

Communications on Pure and Applied Mathematics, 1975

� Catoni, Statistical Learning Theory and Stochastic Optimization, Springer, 2004

Let (A,A) be a measurable space.

(i) For any probability P on (A,A) and any measurable function
ϕ : A → R such that

∫
(exp ◦ϕ)dP < ∞,

log

∫
(exp ◦ϕ)dP = sup

Q≪P

{∫
ϕdQ− KL(Q∥P)

}
.

(ii) If ϕ is upper-bounded on the support of P, the supremum is
reached for the Gibbs distribution G given by

dG
dP

(a) =
exp ◦ϕ(a)∫
(exp ◦ϕ)dP

, a ∈ A.
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log
∫
(exp ◦ϕ)dP = sup

Q≪P

{∫
ϕdQ− KL(Q∥P)

}
, dG

dP = exp ◦ϕ∫
(exp ◦ϕ)dP .

Proof: let Q ≪ P.

− KL(Q∥G) = −
∫

log

(
dQ
dP

dP
dG

)
dQ

= −
∫

log

(
dQ
dP

)
dQ+

∫
log

(
dG
dP

)
dQ

= −KL(Q∥P) +
∫

ϕdQ− log

∫
(exp ◦ϕ) dP.

KL(·∥·) is non-negative, Q 7→ −KL(Q∥G) reaches its max. in
Q = G:

0 = sup
Q≪P

{∫
ϕdQ− KL(Q∥P)

}
− log

∫
(exp ◦ϕ) dP.

Let λ > 0 and take ϕ = −λL̂,

Qλ ∝ exp
(
−λL̂

)
P = arg inf

Q≪P

{
L̂(Q) + KL(Q∥P)

λ

}
.
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"Why should I care about generalisation?"

Generalisation bounds are both a safety check (theoretical and
possibly numerical guarantee on the performance of hypotheses
on unseen data) and an original training objective.

Formalisms for generalisation

• Concentration inequalities

• Rademacher complexities

• VC-dimension

• Information-theoretic

• PAC-Bayes bounds
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When classical PAC-Bayes bounds fall short

• Geometry mismatch. The usual KL divergence ignores the
geometry of the data space.

• KL blows up when ρ ̸≪ π,
• offers no notion of distance or curvature.

� Bégin, Germain, Laviolette & Roy, PAC-Bayesian bounds based on the Rényi divergence, AISTATS, 2016.

� Alquier & Guedj, Simpler PAC-Bayesian bounds for hostile data, Machine Learning, 2018.

• Not all generalisation gaps are equal. Standard PAC-Bayes
bounds control a single scalar gap, but cannot adapt to the
structure of the prediction problem.

Two contributions
(1) geometric reformulation via Wasserstein distances,

(2) rethinking the notion of generalisation through comparators.
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Wasserstein-based deviation bounds



� Viallard, Haddouche, Simsekli and Guedj, Learning via Wasserstein-based high probability generalisation bounds,

NeurIPS 2023.

17 / 51



Why Wasserstein instead of KL?

• Classical PAC-Bayes bounds use KL(ρ∥π), which can:
• ignore geometry of H or Z ;
• break when ρ ̸≪ π;
• be vacuous with heavy-tailed losses.

• The Wasserstein distance

W(ρ, π) = inf
γ∈Γ(ρ,π)

E(h,h′)∼γ

[
d(h, h′)

]
encodes geometry and does not require absolute continuity.

• We provide high-probability PAC-Bayes bounds with W1, valid
under weak moment assumptions and even non-i.i.d. data.
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Setup: priors and multiple priors

• Hypothesis space H with metric d; data
S = (z1, . . . , zm) ∼ µm.

• Prior π ∈ M(H), posterior ρ ∈ M(H).

• Split S into K disjoint subsets S1, . . . ,SK .

• Each prior πi,S is built from data disjoint from Si

(independence for the bound).

→ Data-dependent priors remain valid via sample splitting.
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Theorem 2: High-probability Wasserstein PAC-Bayes bound

Assume ℓ is L-Lipschitz in h and non-negative. For any δ ∈ (0, 1], with
probability at least 1− δ over S ∼ µm, the following holds for the
distributions πi,S := πi(S, ·) and for any ρ ∈ M(H):

Eh∼ρ

[
Rµ(h)− R̂S(h)

]
≤

K∑
i=1

2|Si|L
m

W
(
ρ, πi,S

)
+

K∑
i=1

√
2 |Si| ln

(
K/δ

)
m2 .
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Proof sketch

1. Prove a Wasserstein deviation inequality using the
Kantorovich–Rubinstein dual for W1.

2. Prove Catoni-type high-probability control.

3. Uniformise over all ρ via W(ρ, πi,S) terms.

4. Use sample splitting to construct independent πi,S and take a
union bound over i = 1, . . . ,K.

→ Geometry-aware, linear in W, high-probability bound.
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From bound to learning objective

Minimising the RHS of Theorem 2 gives:

ρ⋆ ∈ arg min
ρ∈M(H)

[
Eh∼ρR̂S(h) +

K∑
i=1

2|Si|L
m

W
(
ρ, πi,S

)]
.

For deterministic predictors (ρ = δhw):

h⋆w ∈ argmin
w

R̂S(hw) + ε

K∑
i=1

|Si|
m

d
(
hw, hwi

)
.

→ Wasserstein acts as a geometry-aware regulariser.
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Interpreting the parameter ε

• In the deterministic case, W(ρ, πi,S) = d(hw, hwi).

• The theoretical weight 2L becomes a tunable ε:

h⋆w = argmin
w

R̂S(hw) + ε

K∑
i=1

|Si|
m

d(hw, hwi).

• ε controls the trade-off between:

• empirical risk minimisation (fit), and
• geometric regularisation (proximity to priors).

• Analogous to the inverse temperature 1/λ in Gibbs posteriors.
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Theorem 4: Online Wasserstein PAC-Bayes bound (statement)

Assume the loss ℓ : H×Z → R+ is L-Lipschitz in h, and that priors
πi(S, ·) satisfy bounded conditional second moments:

∀i,S : Eh∼πi(S,·)

[
Ei−1

[
ℓ(h, zi)2

]]
≤ 1.

Then for any δ ∈ (0, 1], with probability at least 1− δ over S ∼ µm, for
data-dependent priors πi,S = πi(S, ·) and any posterior sequence (ρi)

m
i=1,

1
m

m∑
i=1

Eh∼ρi

[
E[ℓ(h, zi) | Fi−1]− ℓ(h, zi)

]
≤ 2L

m

m∑
i=1

W(ρi, πi,S) +

√
2 ln(1/δ)

m
.
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Theorem 4: interpretation and learning rule

• This is the first online PAC-Bayes bound using Wasserstein
regularisation.

• Controls the expected regret of the online learner:

Regret =
1
m

m∑
i=1

(
Eh∼ρi [ℓ(h, zi)]− Eh∼πi,S [ℓ(h, zi)]

)
.

• The additional term 2L
m
∑

i W(ρi, πi,S) penalises geometric
deviation from the prior sequence.

• The corresponding online update rule:

ρi ∈ argmin
ρ

Eh∼ρ[ℓ(h, zi)] + 2LW(ρ, πi,S), i = 1, . . . ,m.

• For deterministic learners:

hi ∈ argmin
h

ℓ(h, zi) + d(h, hi−1), d(h, hi−1) ≤ 1.

→ Geometry-aware online learning with transport regularisation.
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Take-home message

• High-probability Wasserstein PAC-Bayes bounds for batch
and online settings.

• Linear W1-terms ⇒ optimisable objectives and
deterministic predictors.

• Especially robust under heavy tails and geometry-sensitive
H.
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Comparators in generalisation bounds



� Hellström and Guedj, Comparing comparators in generalization bounds, AISTATS, 2024
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The typical approach

• Most generalisation bounds are about bounding the
difference L − L̂

• Simple, and easy to interpret, but not always tight!

• Can we do better?
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Generalising with Comparator Functions

We define the comparator function as ∆: [0,∞)2 → [0,∞)

convex.

A comparator function computes a discrepancy between the
training and population loss.
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Generic PAC-Bayes Bound with a comparator

Theorem
Assume the loss ℓ is bounded by 1. For any comparator ∆,

P

[
∆(L̂,L) ≤

KL(Qn∥Q0) + log Υ∆(n)
δ

n

]
≥ 1− δ,

where

Υ∆(n) = sup
r∈[0,1]

n∑
k=0

(
n
k

)
rk(1− r)n−ken∆(k/n,r).

� Bégin et al., PAC-Bayesian bounds based on the Rényi divergence, AISTATS, 2016
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Many known bounds arise as instances of the bound from Bégin
et al. (2016). Examples:

• Difference: ∆(p, q) = p− q, we obtain McAllester’s bound

P

L(Qn) ≤ L̂(Qn) +

√
KL(Qn∥Q0) + log(2

√
n/δ)

2n

 ≥ 1−δ.

• Catoni’s family, for any γ ∈ R

∆γ(p, q) = γq− log(1− p+ peγ),

and we get the bound

P

(
∆γ(L̂(Qn),L(Qn)) ≤

KL(Qn∥Q0) + log 1
δ

n

)
≥ 1− δ,
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• Binary KL divergence

∆(p, q) = kl(q, p) = KL(Bern(q) ∥Bern(p))

= q log
q
p
+ (1− q) log

1− q
1− p

,

and we get the Maurer-Langford-Seeger bound

P

(
kl(L̂(Qn),L(Qn)) ≤

KL(Qn∥Q0) + log 2
√
n

δ

n

)
≥ 1− δ.

So which comparator gives the best bound?
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When the loss is bounded, the kl is the optimal comparator (up to
a log term), as established by Foong et al. (2021).

� Foong et al., How Tight Can PAC-Bayes be in the Small Data Regime?, NeurIPS, 2021

In this work we relax the boundedness assumption.
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Bounds in expectation

We let

L̂(Qn) = Eh∼QnE

[
1
n

n∑
i=1

ℓ(h(Xi),Yi)

]
,

L(Qn) = Eh∼QnE [ℓ(h(X),Y)] .

Let X be a real-valued random variable. The cumulant generating
function (CGF) of X is

ΨX(t) = logE
[
etX
]
.
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Theorem — Average Case Generalisation Bound

Let P be a set of distributions such that for all r ∈ [0,∞), there
exists Pr ∈ P with mean r. Let C be the set of proper, convex,
lower semicontinuous functions R2 → R, and let F ⊂ C be the
set of f satisfying:

E
[
ef(L̂(h),L(h))

]
≤ Ex∼PL(h)

[
ef(x̄,L(h))

]
.

Then for all ∆ ∈ F and all Qn ≪ Q0:

∆(L̂(Qn),L(Qn)) ≤
KL(QnDn∥Q0Dn) + logΥP

∆(n)
n

,

where
ΥP

∆(n) = sup
r∈[0,∞)

Ex∼Pr [exp (n∆(x̄, r))] .
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How do we make this relevant beyond bounded losses?

Recall that σ-sub-Gaussian random variables are characterized
by having a CGF that is dominated by the CGF of some Gaussian
distribution with variance σ2, with similar notions for, e.g.,
sub-gamma and sub-exponential random variables.

The convex conjugate of a function f is given by

f∗(y) = sup
x

{⟨x, y⟩ − f(x)} .
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Definition of Sub-P Losses

Let P be a set of distributions such that, for all r ∈ [0,∞), there
exists Pr ∈ P with first moment r.

For all r ∈ [0,∞), let Tr ⊂ R and T = {Tr : r ∈ [0,∞)}. We say
that the loss is sub-(P, T ) if, for all h and t ∈ TL(h), we have

E [exp(t ℓ(h(X),Y))] ≤ Ex∼PL(h) [exp(tx)] .

If Tr = R for all r ∈ [0,∞), we say that the loss is sub-P .

A sub-P loss never has heavier tails than those of P .
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Theorem — Optimal Comparator and Bound

Assume that the loss is sub-(P, T ). Let Ψp(t) = logEx∼Pp [etx] be
the CGF of the distribution Pp, and let the Cramér function be
defined as

∆Ψ
P(q, p) = Ψ∗

p(q) = sup
t∈Tp

{tq−Ψp(t)}.

Define the bound functional

B̂∆
n (α, β, ι) = sup

ρ∈L

{
ρ : ∆(α, ρ) ≤ β + log ι(n)

n

}
.

Then, for any ∆ ∈ F , we have

L̂(Qn) ≤ B̂∆Ψ
P

n

(
L̂(Qn),KL(QnDn∥Q0Dn), 1

)
≤ B̂∆

n

(
L̂(Qn),KL(QnDn∥Q0Dn),Υ∆

P (n)
)
.

In other words, the optimal average generalisation bound is
obtained with the Cramér function as comparator.
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For independent and identically distributed random variables, the
Cramér function characterises the probability of rare events.
Thus, the connection to generalisation bounds is somewhat
natural.

� Cramér, On a new limit theorem of the theory of probability, Uspekhi Mathematicheskikh Nauk, 1944

� Boucheron et al., Concentration inequalities, A nonasymptotic theory of independence, Oxford University Press, 2013
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The case of natural exponential families

• If P is a NEF, the Cramér function is a KL

∆Ψ
P(q, p) = Ψ∗

p(q) = KL(Pq ∥Pp).

• For the case of Gaussian distributions with known variance,
the optimal comparator is given by

KL
(
N (q, σ2) ∥N (p, σ2)

)
=

(q− p)2

2σ2 .

40 / 51



Examples of Cramér Functions

• Bounded loss: binary KL kl(q, p),

• Sub-Gaussian: (q−p)2
2σ2 ,

• Sub-Poisson: p− q+ q log(q/p),

• Sub-Gamma: k(qp − 1− log q
p),

• Sub-Laplacian:

∆Ψ
Lap(q, p) =

√
(q− p)2 + b2

b
− 1

+ log

2
(
b
√

(q− p)2 + b2 − b2
)

(q− p)2

 .
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Theorem — Generic PAC-Bayesian Bound for Sub-P losses

Assume the loss is Sub-P . Then for any ∆ ∈ F , with probability
at least 1− δ, the following holds simultaneously for all
posteriors Qn ≪ Q0

∆
(
L̂(Qn),L(Qn)

)
≤

KL(Qn∥Q0) + log
ΥP

∆(n)
δ

n
.
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Theorem — Near-Optimality of the Cramér Comparator i

Assume that the loss is sub-(P, T ). Then, for any ∆ ∈ F , the
following holds:

B∆Ψ
P

n (L̂(Qn),KL(Qn∥Q0), 1) ≤ B∆
n
(
L̂(Qn),KL(Qn∥Q0),Υ

P
∆(n)

)
.

Furthermore, letting Ῡ(P) := ΥP
∆Ψ

P
, we have:

L(Qn) ≤ B∆Ψ
P

n

(
L̂(Qn),KL(Qn∥Q0), Ῡ(P)

)
.

Finally, for any fixed t ∈ Tp, define ∆t
P(q, p) = tq−Ψp(t). Then:

L(Qn) ≤ B∆t
P

n

(
L̂(Qn),KL(Qn∥Q0), 1

)
.
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Theorem — Near-Optimality of the Cramér Comparator ii

The first inequality shows that the Cramér comparator gives the
smallest possible bound up to the normalisation factor.

The second inequality is a valid PAC-Bayesian generalisation
bound using ∆Ψ

P .

The third provides a parametric bound for fixed t, useful for
optimisation.
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Main takeaways

• Comparator choice is crucial in generalisation

• The optimal choice for unbounded losses: Cramér function
derived from CGF

• For NEFs, this is equivalent to using the KL divergence

In a nutshell
The tightest (up to log terms) generalisation bounds with
controllable moment-generating functions are obtained with the
Cramér function as the comparator function.
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Open Questions

• Can we extend beyond CGF-controlled losses?

• Can we eliminate the log slack?

• Does this strategy apply to heavy-tailed losses?

• Can we derive conditional mutual information bounds?

• Empirical calibration of CGFs in practice
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Information theory and PAC-Bayes
united



Everything you’ve ever wanted to know about generalisation

� Hellström, Durisi, Guedj, and Raginsky, Generalization Bounds: Perspectives from Information Theory and

PAC-Bayes, Foundations and Trends in Machine Learning, 2025 47 / 51



What the book is about

• Offers a unified view of generalisation through two
complementary theories:

• PAC-Bayes bounds: relate predictors to priors and posteriors;
• Information-theoretic bounds: relate data to algorithms.

• Both rely on the same three-step reasoning:

1. control exponential moments of the loss;
2. perform a change of measure;
3. derive a concentration inequality.

• The book presents this pattern in a modular way, with examples
from algorithmic stability and deep learning.

→ One common foundation for modern generalisation theory.
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Bridging two ways of reasoning

• PAC-Bayes view: compares the learner’s average performance
under a posterior and a prior.

• Information-theoretic view: quantifies how much the algorithm
reveals about its training data.

• These perspectives are mathematically equivalent: a PAC-Bayes
bound can be written as an information-theoretic bound with a
matched reference distribution.

• PAC-Bayes is constructive — it suggests training objectives.
Information theory is diagnostic — it measures complexity and
stability.

→ Two complementary lenses on generalisation.
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Practical lessons

• Concentration regimes link data behaviour, noise, and geometry:

• Quadratic (sub-Gaussian): KL-based bounds for light-tailed
data;

• Bernoulli (bounded): finite-range losses such as 0–1
classification;

• Catoni / robust (heavy-tailed): variance control via truncation;
• Wasserstein (geometric): replaces KL by transport cost.

• Each regime suggests a training principle: KL → exponential
posteriors; Catoni → variance-controlled losses; Wasserstein →
geometry-aware regularisation.

• Together, they form a continuum from information-theoretic to
geometric learning.

→ One toolbox, spanning theory and practice.
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Thank you!
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