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Post-Bayes?

Research at the crossroads of statistics, probability, machine
learning, optimisation. Mathematical foundations of machine
learning is a good tagline.

Keywords: statistical learning theory, PAC-Bayes, generalisation
bounds, computational statistics, theoretical analysis of deep
learning, information theory

PAC-Bayes is all about understanding the generalisation abilities
of hypotheses drawn from posterior distributions that are very
rarely proper Bayesian posteriors.
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Joint work with Fredrik Hellström

Featured at AISTATS 2024 in València
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Take-home message
The tightest (up to log terms) generalisation bounds with
controllable moment-generating functions are obtained with the
Cramér function as the comparator function.
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Outline

Generalisation in machine learning

Comparators in generalisation bounds

Finding the optimal comparator

Novel (tight) PAC-Bayes bounds

Discussion

5 / 41



Generalisation in machine learning



Learning is to be able to generalise

[Source: Wikipedia]

From examples, what can a
system learn about the
underlying phenomenon?

Memorising the already seen
data is usually bad (overfitting)

Generalisation is the ability to
’perform’ well on unseen data.

6 / 41



The deep learning era puts generalisation on the spot

Neural networks architectures trained on massive datasets
achieve zero training error which strongly suggests to
statisticians like me they may overfit.

However they often achieve remarkably low errors on test sets –
hence the interest in generalisation bounds for deep networks.

� Belkin et al., Reconciling modern machine-learning practice and the classical bias-variance trade-off, PNAS, 2019
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Why generalisation matters in machine learning

Let (Xi,Yi)
n
i=1 ∈ (X × Y)n be an iid sample drawn from some

distribution D⊗n, and let ℓ : Y × Y → [0,∞) be a loss function.
For any hypothesis h : X → Y ,

L̂(h) =
1
n

n∑
i=1

ℓ(h(Xi),Yi), L(h) = Eℓ(h(X),Y).

• How can we certify that a hypothesis with good
performance on training data has similarly good
performance on new, unseen data?

• When does a low training loss imply a low population loss?
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Typical approach: bound the generalisation gap.

For a hypothesis
h, population loss L and training loss L̂, let

Γ(h) := L(h)− L̂(h)

denote the generalisation gap. We want

L(h) = L̂(h) + L(h)− L̂(h) = L̂(h) + Γ(h) ≤ L̂(h) + Bound,

This motivates generalisation bounds: Γ(h) ≤ Bound, with
several flavours

• hypothesis-dependent vs. hypothesis-free

• (data generating) distribution-dependent vs. distribution-free

• in expectation

• with (arbitrarily) high probability
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The PAC (Probably Approximately Correct) framework

� Valiant, A theory of the learnable, Communications of the ACM, 1984

P[large error] ≤ δ. The ‘confidence parameter’ δ can be thought
of as the probability of being misled by the training set.

Hence high confidence: P[approximately correct] ≥ 1− δ.

With high probability, the generalisation gap of an hypothesis h is
at most something we can control and even compute. For any
δ > 0,

P
[
L(h) ≤ L̂(h) + B(n, δ)

]
≥ 1− δ.

Think of B(n, δ) as Complexity × log 1/δ√
m . PAC bounds are high

confidence statements on the tail of the distribution of
population losses (think of a statistical test at level 1− δ).
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PAC-Bayes

PAC-Bayes is about PAC generalisation bounds for distributions
over hypotheses. Let Qn denote a posterior distribution that
produces hypotheses,

L̂(Qn) = Eh∼Qn L̂(h) =
1
n

n∑
i=1

Eh∼Qnℓ(h(Xi),Yi),

L(Qn) = Eh∼QnL(h) = Eh∼QnEℓ(h(X),Y).

We compare Qn to a prior Q0, typically through the KL divergence
KL(Qn||Q0) = Eh∼Qn log

Qn(h)
Q0(h)

.
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What makes PAC-Bayes a post-Bayes approach?

• Prior
• PAC-Bayes: bounds hold for any distribution
• Bayes: prior choice impacts inference

• Posterior
• PAC-Bayes: bounds hold for any distribution
• Bayes: posterior uniquely defined by prior and statistical
model

• Data distribution
• PAC-Bayes: bounds hold for any distribution
• Bayes: statistical modelling choices impact inference
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A PAC-Bayesian bound

� Shawe-Taylor and Williamson, A PAC analysis of a Bayes estimator, COLT, 1997

� McAllester, Some PAC-Bayesian theorems, COLT, 1998

� McAllester, PAC-Bayesian model averaging, COLT, 1999

Prototypical bound
For any prior Q0, any δ ∈ (0, 1], we have

P

∀Qn : L(Qn) ≤ L̂(Qn) +

√
KL(Qn∥Q0) + log(2

√
n/δ)

2n

 ≥ 1− δ.
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What is this useful for?

From
P
[
L(h) ≤ L̂(h) + B(n, δ,Qn)

]
≥ 1− δ,

• We can compute the numerical value of the bound
B(n, δ,Qn),

• We can train new algorithms and derive new hypotheses,
with

Q⋆ ∈ arg inf
Qn≪Q0

{
L̂(Qn) + B(n, δ,Qn)

}
(optimisation problem which can be solved or approximated by
[stochastic] gradient descent-flavoured methods, Monte Carlo
Markov Chain, variational inference...)
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Variational definition of the KL-divergence

� Csiszár., I-divergence geometry of probability distributions and minimization problems, Annals of Probability, 1975

� Donsker and Varadhan, Asymptotic evaluation of certain Markov process expectations for large time,

Communications on Pure and Applied Mathematics, 1975

� Catoni, Statistical Learning Theory and Stochastic Optimization, Springer, 2004

Let (A,A) be a measurable space.

(i) For any probability P on (A,A) and any measurable function
ϕ : A → R such that

∫
(exp ◦ϕ)dP < ∞,

log

∫
(exp ◦ϕ)dP = sup

Q≪P

{∫
ϕdQ− KL(Q∥P)

}
.

(ii) If ϕ is upper-bounded on the support of P, the supremum is
reached for the Gibbs distribution G given by

dG
dP

(a) =
exp ◦ϕ(a)∫
(exp ◦ϕ)dP

, a ∈ A.
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log
∫
(exp ◦ϕ)dP = sup

Q≪P

{∫
ϕdQ− KL(Q∥P)

}
, dG

dP = exp ◦ϕ∫
(exp ◦ϕ)dP .

Proof: let Q ≪ P.

− KL(Q∥G) = −
∫

log

(
dQ
dP

dP
dG

)
dQ

= −
∫

log

(
dQ
dP

)
dQ+

∫
log

(
dG
dP

)
dQ

= −KL(Q∥P) +
∫

ϕdQ− log

∫
(exp ◦ϕ) dP.

KL(·∥·) is non-negative, Q 7→ −KL(Q∥G) reaches its max. in
Q = G:

0 = sup
Q≪P

{∫
ϕdQ− KL(Q∥P)

}
− log

∫
(exp ◦ϕ) dP.

Let λ > 0 and take ϕ = −λL̂,

Qλ ∝ exp
(
−λL̂

)
P = arg inf

Q≪P

{
L̂(Q) + KL(Q∥P)

λ

}
.
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"Why should I care about generalisation?"

Generalisation bounds are both a safety check (theoretical and
possibly numerical guarantee on the performance of hypotheses
on unseen data) and an original training objective.

Formalisms for generalisation

• Concentration inequalities

• Rademacher complexities

• VC-dimension

• Information-theoretic quantities

• PAC-Bayes bounds (focus of today)
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Comparators in generalisation bounds



The typical approach

• Most generalisation bounds are about bounding the
difference L − L̂

• Simple, and easy to interpret, but not always tight!

• Can we do better?
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Generalising with Comparator Functions

We define the comparator function as ∆: [0,∞)2 → [0,∞)

convex.

A comparator function computes a discrepancy between the
training and population loss.
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Generic PAC-Bayes Bound with a comparator

Theorem
Assume the loss ℓ is bounded by 1. For any comparator ∆,

P

[
∆(L̂,L) ≤

KL(Qn∥Q0) + log Υ∆(n)
δ

n

]
≥ 1− δ,

where

Υ∆(n) = sup
r∈[0,1]

n∑
k=0

(
n
k

)
rk(1− r)n−ken∆(k/n,r).

� Bégin et al., PAC-Bayesian bounds based on the Rényi divergence, AISTATS, 2016
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Corollary

If L̂ ≤ α, KL(Qn∥Q0) ≤ β, andΥ∆(n) ≤ ι(n), we obtain the bound

P
(
L(Qn) ≤ B∆

n (α, β, ι)
)
≥ 1− δ,

where

B∆
n (α, β, ι) = sup

ρ∈[0,1]

{
ρ : ∆(α, ρ) ≤

β + log ι(n)
δ

n

}
.
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In the previous bound,

• α is the empirical loss L̂(Qn),

• β is the KL divergence KL(Qn∥Q0),

• ι(n) is a complexity term,

• δ is the confidence level,

• ρ is the variable representing the population loss L(Qn).

Given that the comparator between training and population loss
is bounded, what is the largest population loss still compatible
with the bound?
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Many known bounds arise as instances of the bound from Bégin
et al. (2016). Examples:

• Difference: ∆(p, q) = p− q, we obtain McAllester’s bound

P

L(Qn) ≤ L̂(Qn) +

√
KL(Qn∥Q0) + log(2

√
n/δ)

2n

 ≥ 1−δ.

• Catoni’s family, for any γ ∈ R

∆γ(p, q) = γq− log(1− p+ peγ),

and we get the bound

P

(
∆γ(L̂(Qn),L(Qn)) ≤

KL(Qn∥Q0) + log 1
δ

n

)
≥ 1− δ,
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• Binary KL divergence

∆(p, q) = kl(q, p) = KL(Bern(q) ∥Bern(p))

= q log
q
p
+ (1− q) log

1− q
1− p

,

and we get the Maurer-Langford-Seeger bound

P

(
kl(L̂(Qn),L(Qn)) ≤

KL(Qn∥Q0) + log 2
√
n

δ

n

)
≥ 1− δ.

So which comparator gives the best bound?
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When the loss is bounded, the kl is the optimal comparator (up to
a log term), as established by Foong et al. (2021).

� Foong et al., How Tight Can PAC-Bayes be in the Small Data Regime?, NeurIPS, 2021

In this work we relax the boundedness assumption.
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Finding the optimal comparator



Bounds in expectation

We let

L̂(Qn) = Eh∼QnE

[
1
n

n∑
i=1

ℓ(h(Xi),Yi)

]
,

L(Qn) = Eh∼QnE [ℓ(h(X),Y)] .

Let X be a real-valued random variable. The cumulant generating
function (CGF) of X is

ΨX(t) = logE
[
etX
]
.
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Theorem — Average Case Generalisation Bound

Let P be a set of distributions such that for all r ∈ [0,∞), there
exists Pr ∈ P with mean r. Let C be the set of proper, convex,
lower semicontinuous functions R2 → R, and let F ⊂ C be the
set of f satisfying:

E
[
ef(L̂(h),L(h))

]
≤ Ex∼PL(h)

[
ef(x̄,L(h))

]
.

Then for all ∆ ∈ F and all Qn ≪ Q0:

∆(L̂(Qn),L(Qn)) ≤
KL(QnDn∥Q0Dn) + logΥP

∆(n)
n

,

where
ΥP

∆(n) = sup
r∈[0,∞)

Ex∼Pr [exp (n∆(x̄, r))] .
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How do we make this relevant beyond bounded losses?

Recall that σ-sub-Gaussian random variables are characterized
by having a CGF that is dominated by the CGF of some Gaussian
distribution with variance σ2, with similar notions for, e.g.,
sub-gamma and sub-exponential random variables.

The convex conjugate of a function f is given by

f∗(y) = sup
x

{⟨x, y⟩ − f(x)} .
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Definition of Sub-P Losses

Let P be a set of distributions such that, for all r ∈ [0,∞), there
exists Pr ∈ P with first moment r.

For all r ∈ [0,∞), let Tr ⊂ R and T = {Tr : r ∈ [0,∞)}. We say
that the loss is sub-(P, T ) if, for all h and t ∈ TL(h), we have

E [exp(t ℓ(h(X),Y))] ≤ Ex∼PL(h) [exp(tx)] .

If Tr = R for all r ∈ [0,∞), we say that the loss is sub-P .
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Theorem — Optimal Comparator and Bound

Assume that the loss is sub-(P, T ). Let Ψp(t) = logEx∼Pp [etx] be
the CGF of the distribution Pp, and let the Cramér function be
defined as

∆Ψ
P(q, p) = Ψ∗

p(q) = sup
t∈Tp

{tq−Ψp(t)} .

Define the bound functional

B̂∆
n (α, β, ι) = sup

ρ∈L

{
ρ : ∆(α, ρ) ≤ β + log ι(n)

n

}
.

Then, for any ∆ ∈ F , we have

L̂(Qn) ≤ B̂∆Ψ
P

n

(
L̂(Qn),KL(QnDn∥Q0Dn), 1

)
≤ B̂∆

n

(
L̂(Qn),KL(QnDn∥Q0Dn),Υ∆

P (n)
)
.

In other words, the optimal average generalisation bound is
obtained with the Cramér function as comparator.
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For independent and identically distributed random variables, the
Cramér function characterises the probability of rare events.
Thus, the connection to generalization bounds is somewhat
natural.

� Cramér, On a new limit theorem of the theory of probability, Uspekhi Mathematicheskikh Nauk, 1944

� Boucheron et al., Concentration inequalities, A nonasymptotic theory of independence, Oxford University Press, 2013
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The case of natural exponential families

• If P is a NEF, the Cramér function is a KL

∆Ψ
P(q, p) = Ψ∗

p(q) = KL(Pq ∥Pp).

• For the case of Gaussian distributions with known variance,
the optimal comparator is given by

KL
(
N (q, σ2) ∥N (p, σ2)

)
=

(q− p)2

2σ2 .
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Examples of Cramér Functions

• Bounded loss: binary KL kl(q, p),

• Sub-Gaussian: (q−p)2
2σ2 ,

• Sub-Poisson: p− q+ q log(q/p),

• Sub-Gamma: k(qp − 1− log q
p),

• Sub-Laplacian:

∆Ψ
Lap(q, p) =

√
(q− p)2 + b2

b
− 1

+ log

2
(
b
√

(q− p)2 + b2 − b2
)

(q− p)2

 .
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Novel (tight) PAC-Bayes bounds



Theorem — Generic PAC-Bayesian Bound for Sub-P losses

Assume the loss is Sub-P . Then for any ∆ ∈ F , with probability
at least 1− δ, the following holds simultaneously for all
posteriors Qn ≪ Q0

∆
(
L̂(Qn),L(Qn)

)
≤

KL(Qn∥Q0) + log
ΥP

∆(n)
δ

n
.
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Theorem — Near-Optimality of the Cramér Comparator i

Assume that the loss is sub-(P, T ). Then, for any ∆ ∈ F , the
following holds:

B∆Ψ
P

n (L̂(Qn),KL(Qn∥Q0), 1) ≤ B∆
n
(
L̂(Qn),KL(Qn∥Q0),Υ

P
∆(n)

)
.

Furthermore, letting Ῡ(P) := ΥP
∆Ψ

P
, we have:

L(Qn) ≤ B∆Ψ
P

n

(
L̂(Qn),KL(Qn∥Q0), Ῡ(P)

)
.

Finally, for any fixed t ∈ Tp, define ∆t
P(q, p) = tq−Ψp(t). Then:

L(Qn) ≤ B∆t
P

n

(
L̂(Qn),KL(Qn∥Q0), 1

)
.
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Theorem — Near-Optimality of the Cramér Comparator ii

The first inequality shows that the Cramér comparator gives the
smallest possible bound up to the normalisation factor.

The second inequality is a valid PAC-Bayesian generalisation
bound using ∆Ψ

P .

The third provides a parametric bound for fixed t, useful for
optimisation.
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Discussion



Main takeaways

• Comparator choice is crucial in generalisation bounds

• The optimal choice: Cramér function derived from CGF, for
unbounded losses

• For NEFs, this is equivalent to using the KL divergence
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Open Questions

• Can we extend beyond CGF-controlled losses?

• Can we eliminate the log slack?

• Does this strategy apply to heavy-tailed losses?

• Can we derive conditional mutual information bounds?

• Empirical calibration of CGFs in practice
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� Hellström and Guedj, Comparing comparators in generalization bounds, AISTATS, 2024
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� Hellström, Durisi, Guedj and Raginsky, Generalization Bounds: Perspectives from Information Theory and

PAC-Bayes, Foundations and Trends in Machine Learning, 2025

Thank you!
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