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Abstract

In this paper, we present a new estimator of the mean of a random vector, computed
by applying some threshold function to the norm. Non asymptotic dimension-free
almost sub-Gaussian bounds are proved under weak moment assumptions, using
PAC-Bayesian inequalities.

1 Introduction

Estimating the mean of a random vector under weak tail assumptions has attracted a lot of attention
recently. A number of properties have spurred the interest for these new results, where the empirical
mean is replaced by a more robust estimator. One aspect is that it is possible to obtain an estimator
with a sub-Gaussian tail while assuming much weaker assumptions on the data, up to the fact of
assuming only the existence of a finite covariance matrix. Another appealing feature is that it is
possible to obtain dimension-free non asymptotic bounds that remain valid in a separable Hilbert
space. Some important references are Catoni [2012] in the one dimensional case and Minsker [2015]
and Lugosi and Mendelson [2017] in the multidimensional case. Building on the breakthrough of
Minsker [2015], that uses a multidimensional generalization of the median of means estimator, Joly
et al. [2017] and Lugosi and Mendelson [2017] propose successive improvements of the median of
means approach to get an estimator with a genuine sub-Gaussian dimension-free tail bound, while
still requiring only the existence of the covariance matrix. In the mean time, the M-estimator approach
of Catoni [2012] has also been generalized to multidimensional settings through the use of matrix
inequalities in Minsker [2016] and Minsker and Wei [2017].

Here we follow a different route, based on a multidimensional extension of Catoni [2012] using
PAC-Bayesian bounds. Our new estimator is a simple modification of the empirical mean, where
some threshold is applied to the norm of the sample vectors. Therefore, it is straightforward to
compute, and this is a strong point of our approach, compared to others. Note also that we make here
some compromise on the sharpness of the estimation error bound, in order to simplify the definition
and computation of the estimator. This compromise consists in the presence of second order terms,
while the first order terms can be made as close as desired to a true sub-Gaussian bound with exact
constants, as stated in Lugosi and Mendelson [2017, eq. (1.1)]. With a more involved estimator, a
true sub-Gaussian bound without second order terms is possible and will be described in a separate
publication.

2 Thresholding the norm

Consider X ∈ Rd, a random vector, and (X1, . . . , Xn) a sample made of n independent copies of X .
The question is to estimate E(X) from the sample, under the assumption that E

(
‖X‖p

)
<∞, for

some p ≥ 2.
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Consider the threshold function ψ(t) = min{t, 1}, t ∈ R+, and for some positive real parameter λ
to be chosen later, introduce the thresholded sample

Yi =
ψ
(
λ‖Xi‖

)
λ‖Xi‖

Xi.

Our estimator of m = E(X) will simply be the thresholded empirical mean m̂ =
1

n

n∑
i=1

Yi.

Proposition 2.1 Introduce the increasing functions

g1(t) =
1

t

(
exp(t)− 1

)
and g2(t) =

2

t2

(
exp(t)− 1− t

)
, t ∈ R,

that are defined by continuity at t = 0 and are such that g1(0) = g2(0) = 1. Assume that
E
(
‖X‖2

)
<∞ and that we know v such that

sup
θ∈Sd

E
(
〈θ,X −m〉2

)
≤ v <∞,

where Sd =
{
θ ∈ Rd, ‖θ‖ = 1

}
is the unit sphere of Rd. For some positive real parameter µ, put

λ = µ−1
√

2 log(δ−1)

avn
, T = max

{
E
(
‖X −m‖2

)
, v
}
,

a = g2(2µ) ≥ 1, b = exp(2µ)g1

(
µ2

√
2av

T log(δ−1)

)
≥ 1.

With probability at least 1− δ,

‖m̂−m‖ ≤
√

2av log(δ−1)

n
+

√
bT

n
+ inf
p≥1

Cp
np/2

+ inf
p≥2

C ′p
np/2

,

where

Cp =
1

p+ 1

(
p

(p+ 1)µ

)p(
2 log(δ−1)

av

)p/2
sup
θ∈Sd

E
(
‖X‖p〈θ,X −m〉−

)
, and

C ′p =
1

p+ 1

(
p

(p+ 1)µ

)p(
2 log(δ−1)

av

)p/2
E
(
‖X‖p

)
‖m‖

(
1 +

√
a log(δ−1)

2vn
‖m‖

)
.

Remarks Note that in case E
(
‖X‖2

)
<∞ but E

(
‖X‖p

)
=∞ for p > 2, we can use the bound

C1√
n
+
C ′2
n
≤ 1

2µ

√
log(δ−1)(T + ‖m‖2)

2an
+

8 log(δ−1)

27µ2avn
E
(
‖X‖2

)
‖m‖

×

(
1 +

√
a log(δ−1)

2vn
‖m‖

)
= O

(
1

2µ

√
log(δ−1)(T + ‖m‖2)

2an

)
.

Note also that if we take µ = 1/4 and assume that δ ≤ exp(−1), then a ≤ 1.2 and b ≤ 4. If
moreover E

(
‖X‖p+1

)
<∞, for some p > 1, we obtain with probability at least 1− δ that

‖m̂−m‖ ≤
√

2.4 v log(δ−1)

n
+

√
4T

n
+

Cp
np/2

+
C ′p+1

n(p+1)/2
,

meaning that the tail distribution of ‖m̂−m‖ has a sub-Gaussian behavior, up to second order terms.
Remark that by taking µ small, we can make a and b as close as desired to 1, at the expense of the
values of Cp and C ′p.
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Proof The rest of the paper is devoted to the proof of Proposition 2.1.

An elementary computation shows that the threshold function ψ satisfies

0 ≤ 1− ψ(t)

t
≤ inf
p≥1

tp

p+ 1

(
p

p+ 1

)p
, t ∈ R+, (1)

where non integer values of the exponent p are allowed. Let Y =
ψ
(
λ‖X‖

)
λ‖X‖

X and m̃ = E(Y ). We

can decompose the estimation error in direction θ into

〈θ, m̂−m〉 = 〈θ, m̃−m〉+ 1

n

n∑
i=1

〈θ, Yi − m̃〉, θ ∈ Rd. (2)

Introduce α =
ψ
(
λ‖X‖

)
λ‖X‖

and let us deal with the first term first. As 0 ≤ 1−α ≤ λp‖X‖p

p+ 1

(
p

p+ 1

)p
〈θ, m̃−m〉 = E

[
(α− 1)〈θ,X〉

]
= E

[
(α− 1)〈θ,X −m〉

]
+ E(α− 1)〈θ,m〉

≤ inf
p≥1

λp

(p+ 1)

(
p

p+ 1

)p
E
(
‖X‖p〈θ,X −m〉−

)
+ inf
p≥2

λp

(p+ 1)

(
p

p+ 1

)p
E
(
‖X‖p

)
〈θ,m〉−,

where r− = max{0,−r} is the negative part of integer r.

Let us now look at the second term of the decomposition (2). To gain uniformity in θ, we will use a
PAC-Bayesian inequality and the family of normal distributions ρθ = N

(
θ, β−1Id

)
, bearing on the

parameter θ ∈ Rd, where Id ∈ Rd×d is the identity matrix of size d× d, and where β is a positive
parameter to be chosen later on.

We will use the following PAC-Bayesian inequality without recalling its proof, that is a simple
consequence of Catoni [2004, eq. (5.2.1) page 159]:

Lemma 2.2 For any bounded measurable function f : Rd ×Rd → R, for any probability measure
π ∈ M1

+

(
Rd
)
, for any δ ∈]0, 1[, with probability at least 1 − δ, for any probability measure

ρ ∈M1
+(R

d),

1

n

n∑
i=1

∫
f
(
θ,Xi

)
dρ(θ) ≤

∫
log
[
E
(
exp
(
f(θ,X)

))]
dρ(θ) +

K(ρ, π) + log(δ−1)

n
,

where K is the Kullback-Liebler divergence K(ρ, π) =
{∫

log
(
ρ/π

)
dρ, when ρ� π,

+∞, otherwise.

Remarking that
1

n

n∑
i=1

〈θ, Yi − m̃〉 =
1

n

n∑
i=1

∫
〈θ′, Yi − m̃〉dρθ(θ′), using π = ρ0, and taking into

account the fact that K(ρθ, ρ0) = β‖θ‖2/2, we obtain as a consequence of the previous lemma that
with probability at least 1− δ, for any θ ∈ Sd,

1

n

n∑
i=1

〈θ, Yi − m̃〉 ≤
1

µλ

∫
log

(
E exp

(
µλ〈θ′, Y − m̃〉

))
dρθ(θ

′) +
β

2nµλ
+

log(δ−1)

nµλ
.

In our setting f is not bounded in θ, but the required extension is valid as explained in Catoni [2004].
Since the logarithm is concave,∫

log

(
E exp

(
µλ〈θ′, Y − m̃〉

))
dρθ(θ

′) ≤ log

[
E

(∫
exp
(
µλ〈θ′, Y − m̃〉

)
dρθ(θ

′)

)]

= log

[
E

(
exp
(
µλ〈θ, Y − m̃〉+ µ2λ2

2β
‖Y − m̃‖2

))]
,

where we have used the explicit expression of the Laplace transform of a Gaussian distribution.
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To go further, reminding as a source of inspiration the proof of Bennett’s inequality, let us introduce
the increasing functions g1 and g2 defined in Proposition 2.1. These functions will be used to bound
the exponential function by polynomials. More precisely, we will exploit the fact that when t ≤ b,
exp(t) ≤ 1 + t+ g2(b)t

2/2 and exp(t) ≤ 1 + g1(b)t. From this, it results that if t ≤ b and u ≤ c,

exp(t+ u) ≤ exp(t)
(
1 + g1(c)u

)
≤ exp(t) + g1(c) exp(b)u

≤ 1 + t+ g2(b)t
2/2 + g1(c) exp(b)u.

Legitimate values for b and c will be deduced from the remark that λ‖Y ‖ ≤ 1, implying λ‖m̃‖ ≤ 1.
Namely, in our context, we will use b = 2µ and c = 2µ2/β.

These arguments put together lead to the inequality

E

(
exp

(
µλ〈θ, Y − m̃〉+ µ2λ2

2β

∥∥Y − m̃∥∥2))

≤ 1 + g2(2µ)
µ2λ2

2
E
(
〈θ, Y − m̃〉2

)
+ exp(2µ)g1

(
2µ2

β

)
µ2λ2

2β
E
(∥∥Y − m̃∥∥2).

Replacing in the previous inequalities, we obtain

Lemma 2.3 With probability at least 1− δ, for any θ ∈ Sd,

〈θ, m̂− m̃〉 = 1

n

n∑
i=1

〈θ, Yi − m̃〉 ≤ g2(2µ)
µλ

2
E
(
〈θ, Y − m̃〉2

)
+ exp(2µ)g1

(
2µ2

β

)
µλ

2β
E
(
‖Y − m̃‖2

)
+
β + 2 log(δ−1)

2µλn
.

Remark that

〈θ, Y −m〉2 = 〈θ, αX −m〉2 =
(
α〈θ,X −m〉 − (1− α)〈θ,m〉

)2
≤ α〈θ,X −m〉2 + (1− α)〈θ,m〉2 ≤ 〈θ,X −m〉2 + (1− α)〈θ,m〉2.

Therefore, using inequality (1) and the definition of α,

E
(
〈θ, Y − m̃〉2

)
≤ E

(
〈θ, Y −m〉2

)
≤ E

(
〈θ,X −m〉2

)
+ 〈θ,m〉2 inf

p≥2

λp

p+ 1

(
p

p+ 1

)p
E
(
‖X‖p

)
.

Remark also that Y = g(X), where g is a contraction (being the projection on a ball). Consequently

E
(
‖Y − m̃‖2

)
=

1

2
E
(
‖Y1 − Y2‖2

)
≤ 1

2
E
(
‖X1 −X2‖2

)
= E

(
‖X −m‖2

)
.

In view of these remarks, the previous lemma translates to

Lemma 2.4 Let a = g2
(
2µ
)

and b ≥ exp(2µ)g1

(
2µ2

β

)
.

With probability at least 1− δ, for any θ ∈ Sd,

〈θ, m̂−m〉 ≤ aµλ

2
E
(
〈θ,X −m〉2

)
+
bµλ

2β
E
(
‖X −m‖2

)
+
β + 2 log(δ−1)

2µλn

+ inf
p≥1

λp

p+ 1

(
p

p+ 1

)p
E
(
‖X‖p〈θ,X −m〉−

)
+ inf
p≥2

λp

p+ 1

(
p

p+ 1

)p
E
(
‖X‖p

)(
〈θ,m〉− +

aµλ

2
〈θ,m〉2

)
.

Proposition 2.1 follows by taking b as mentioned there, λ =
1

µ

√
2 log(δ−1)

nav
, and β =√

2bT log(δ−1)

av
≥
√

2T log(δ−1)

av
, so that the condition on b is satisfied.
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