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Abstract

We generalize the PAC-Bayes theorem in the setting of multi-class learning. We
set off by defining empirical and generalization risks in the multi-class setting with
valued asymmetric loss function reflecting unequal gravity of misclassification and
taking into account the option to not classify an example. We provide a simplified
proof of the PAC-Bayes theorem in this multi-class setting. The generalization
risk of a Gibbs Classifier is upper-bounded by its empirical risk and parameters
of the multi-class classifier. We also formulate a convex mathematical program to
estimate multi-class PAC-Bayes bound.

1 Introduction

PAC stands for Probably Approximately Correct; it was first used by Valiant in the PAC learnability
(1984). The first PAC-Bayes bound was given in (McAllester (1998)) other tight versions can be find
in (McAllester, (1999; 2003); Seeger, (2002;2003); Langford and Shawe-Taylor, 2003; Langford,
2005; Laviolette and Marchand, 2005; Maurer, 2006; Catoni, 2007; Lacasse et al., 2007; Germain
et al., 2009; Laviolette et al., 2011, McAllester, 2013; Germain et al., 2016). To the best of our
knowledge, bounds are generally developed for binary classifiers with (0-1) loss functions. The
emerging of the multi-class learning problems in practice has stimulated the development of various
bounds. Some attempts have been made to generalize PAC-Bayes theorem in multi-class case with
a (0-1) loss function (Seeger, 2003; McAllester, 2013). The case of valued loss function has been
treated generally in the binary classification (Seeger 2003; Germain et al. 2006). Morvant et al.
(2012) have proposed a PAC-Bayes bounds based on confusion matrices of a multi-class classifier as
an error measure. A PAC-Bayesian margin bound for generalization loss in structured classification
has been suggested by Bartlett et al. (2004). In this paper we generalize PAC-Bayes theorem in more
real-world multi-class setting with three characteristics: (i) Number of classes is more than 2 (ii)
the possibility to not classify an example and (iii) loss function is valued and asymmetric reflecting
unequal gravity of misclassification.

We are concerned with a multi-class problem in which each example z̃ = (x̃, ỹ) ∈ Z is constituted
from an input-output pair (x, y) where x ∈ X and y ∈ Y; such that |Z| = n and |Y| > 2; a finite set
of observed classes. We adopt the PAC setting where each example z̃ from Z is drawn independent
and identically distributed (i.i.d) according to a fixed, but unknown distribution Pz̃ . According to
the characteristic (ii) the multi-class classifier can choose to not classify an example. Many reasons
may justify adding to Y new predicted classes like "Unclassified" "hesitation between classes y1 and
y2", etc. In practice, it’s more prudent to not classify an example than to give him a wrong class (See
Bartlett and Wegkamp (2008) for an interesting classification model with rejection option). Let C a
set of predicted classes such that Y ⊆ C. In our multi-class setting, the classification task consists in
assigning to each input object x a predicted class c. The accuracy of classifier h : X→ C is measured
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through a loss function. In the binary case, this is usually a zero-one loss function. In our multi-class
context, however, different types of errors may deserve different error costs according to their relative
gravity.

We thus posit a more general valued, cardinal, normalized, loss function Q : C × Y → [0, 1],
with Q(y, y) = 0∀y ∈ Y and Maxc,yQ(c, y) = 1. The real risk of the classifier h is defined as
Rh = Ez̃Q(h(x̃), y) and empirical risk R̃h = 1

n

∑n
j=1Q(h(xj), yj). Now consider the ordered set

of distinct s values that may be incurred of the valued loss function Q(error costs) noted 0 = q1 <
q2 < ... < qs = 1 such that: Qc,y = qi∀(c, y) ∈ C× Y, 1 ≤ i ≤ s. In the sequel, “multi-class” is
taken to mean that the error cost takes on at least one fractional value, reflecting intensity or relative
gravity of errors – so that s > 2. Consider the random vector K̃ = (K̃1, ..., K̃s) , where K̃i is the
number of examples falling into error cost category i, 1 ≤ i ≤ s. Let K = {k ∈ Zs+ |

∑s
i=1 ki = n}

denote the range of K̃, the empirical risk is defined by:

R̃h =
1

n
qT K̃(p(h)) =

s∑
i=1

qiki (1)

We remark that K̃ = (K̃1, ..., K̃s) has a multinomial distribution with probabilities pi(h), 1 ≤ i ≤ s.
As a consequence, the true risk can equivalently be expressed as:

Rh = qT p(h) =

s∑
i=1

qipi(h) (2)

According to the previous remark, the probability that the classifier h makes exactly ki errors on the
loss category i for 0 ≤ s ≤ 1 is:

Prz̃{K̃(p(h)) = k | p(h)} =
n!∏s
i=1 ki!

s∏
i=1

pi(h)ki (3)

In the following section we generalize PAC-Bayes theorem in this multi-class setting with a simplified
proof. A convex mathematical program is formulated in order to estimate the tightest PAC-Bayes
multi-class bound.

2 PAC-Bayes Generalization bound for Multi-class learning

The powerful PAC-Bayes theorem provides a tight upper bound on the risk of a stochastic classifier
called the Gibbs classifier G. Given an input example x, the label GQ(x) assigned to x by the
stochastic Gibbs classifier GQ is defined by the following process. We first choose randomly a
deterministic classifier h from a family of classifiers H according to the posterior distribution Q and
then use h to assign the label to x. The risk of GQ is defined as the expected risk of classifier drawn
according to Q :

R(GQ) = Eh∼QR(h)

And the empirical risk:

R̃(GQ) = Eh∼QR̃(h)

Remember that in our multi-class setting, for each multi-class classifier h the real risk isRh = qT p(h)

and the empirical risk is R̃h = 1
nq

T K̃(p(h)) with K̃i(p(h)) is the number of examples falling, with
probability pi(h), into loss category i, and qi the unit error cost of category i, 1 ≤ i ≤ s. Let define
for each loss category i, 1 ≤ i ≤ s:

p̄i(Q) = Eh∼Qpi(h) and

κ̃i(Q) = 1
nEh∼QK̃i(p(h)) and

κ̃i(Q) is a random variable, with Ez̃κ̃i(Q) = p̄(Q)
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In the multi-class setting, the Gibbs real risk can be written:

R(Q) = R(GQ) = qT p̄(Q) (4)

And the Gibbs empirical risk:
R̃(Q) = R̃(GQ) = qT κ̃(Q) (5)

The Kullback-Leibler divergence (KL) measures the relative entropy between probability measures
(see Thomas and Cover , 1991). In the multi-class setting, we have a meta-Bernoulli instead of
Bernoulli alea. Hence we can define the KL divergence between two meta-Bernoulli aleas with
parameters (a, s) and (b, s) as:

kl(b‖a) =

s∑
i=1

biln
bi
ai

(6)

We define for each classifier h from a set of multi-classifiers H , and for each k ∈ K = {k ∈ Zs+ |∑s
i=1 ki = n}:

B(k, h) = Prz̃{K̃(p(h)) = k | p(h)} =
n!∏s
i=1 ki!

s∏
i=1

pi(h)ki , (k ∈ K,h ∈ H) (7)

the probability that the classifier h makes exactly ki errors on the loss category i for 1 ≤ i ≤ s.
Lemma 1: For each prior distribution B on H , for each δ ∈ [0, 1] we have:

Prz̃(Eh∼B
1

B(k,h) ≤
1
δ ( (n+s−1)!

(s−1)!n! )) ≥ 1− δ

Proof :Remember that K = {k ∈ Zs+ |
∑s
i=1 ki = n}, we have:

Ez̃
1

B(k,h) =
∑
k∈K Prz̃(K̃ = k)× Ez̃|K̃=k

1
B(k,h)

=
∑
k∈K Prz̃(K̃ = k)× 1

Prz̃(K̃=k)

= |K|
= (n+s−1)!

(s−1)!n!

So, for each distribution B:

Ez̃Eh∼B
1

B(k,h) = Eh∼BEz̃
1

B(k,h) = (n+s−1)!
(s−1)!n!

We get Lemma 1 by applying Markov inequality.

Lemma 2: For each posterior distribution Q, for each k ∈ K:

Eh∼Q( 1
n ln( 1

B(k,h) )) ≥ kl(κ̃(Q)‖p̄(Q))

Proof :By definition:

B(k, h) = n!∏s
i=1 ki!

∏s
i=1 pi(h)ki

By using Stirling approximation we get:

ln(B(k, h)) = −nkl(κ(h)‖p(h)) + o(n)

For two Meta-Bernoulli aleas KL divergence is defined as:

kl(κ(h)‖p(h)) =
∑s
i=1 κi(h)lnκi(h)

pi

Hence:

1
n ln( 1

B(k,h) ) ≥ kl(κ(h)‖p(h))

By applying Jensen inequality we get:
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Eh∼Q
1
n ln( 1

B(k,h) ) ≥ kl(κ̃(Q)‖p̄(Q))

By applying these two lemmas we get the following PAC-Bayes theorem in the multi-class setting:

Theorem 1: For any set of multi-classes classifiersH , for any prior distribution B, for each δ ∈ [0, 1]

Prz̃(∀Q : kl(κ̃(Q)‖p̄(Q)) ≤
KL(Q‖B) + ln( 1

δ ( (n+s−1)!
(s−1)!n! ))

n
) ≥ 1− δ (8)

Proof:

For each prior distribution B we have:

ln[Eh∼B( 1
B(k,h) )] = ln[Eh∼Q

B(h)
Q(h) ( 1

B(k,h) )]∀Q
≥ Eh∼Qln[B(h)

Q(h) ( 1
B(k,h) )] by Jensen inequality

= −KL(Q‖B) + Eh∼Qln[ 1
B(k,h) ]

By applying Lemma 1 we have:

Prz̃(∀Q, Eh∼Qln[
1

B(k, h)
] ≤ KL(Q‖B) + ln(

1

δ
(
(n+ s− 1)!

(s− 1)!n!
))) ≥ 1− δ (9)

By applying Lemma 2 we get multi-class PAC-Bayes theorem.

Multi-class PAC-Bayes theorem tells us that the KL divergence between empirical loss and general-
ization loss of the posterior distribution Q is bounded by the KL divergence between Q and the prior
distribution B. We try now to determine a bound on the generalization risk of a Gibbs Classifier. For
a fixed δ and B let define the function :

r(κ,Q) = Supx∈<s{qTx|n.kl(κ‖x) ≤ KL(Q‖B) + ln( 1
δ ( (n+s−1)!

(s−1)!n! ))}

It’s clear that r̃(Q) = r(κ̃(Q),Q) is a random variable driven from z̃ = (x̃, ỹ) ∈ Z.

Theorem 2:

Prz̃(∀Q : R(Q) ≤ r̃(Q)) ≥ 1− δ

Proof: We define:

ε(Q) = KL(Q‖B) + ln( 1
δ ( (n+s−1)!

(s−1)!n! ))

A(Q) = {κ ∈ Us|n.kl(κ‖p̄(Q)) ≤ ε(Q)} with Us = {x ∈ R+
s , e

Tx = 1

B(Q) = {κ ∈ Us|R(Q) ≤ r(κ,Q)}

By definition of r(κ,Q) :

∀(Q) : {(κ, p̄(Q))|n.kl(κ‖p̄(Q)) ≤ ε(Q)} ⊆ {(κ, p̄(Q))|κ ∈ Us|R(Q) ≤ r(κ,Q)}

The projection and the intersection preserve the inclusion, then :

∀Q : A(Q) ⊆ B(Q), and

1− δ ≤ Prz̃(κ̃(Q) ∈ A(Q)) ≤ Prz̃(κ̃(Q) ∈ B(Q))

3 PAC-Bayes Multi-class Bound Estimation

Theorem 2 gives a determinist bound (expected real risk) for each posterior distribution Q. Remember
that H is a finite set of multi-class classifiers, in the following we will prove that for a fixed Q,
estimate PAC-Bayes bound is equivalent to solve a convex mathematical program.

The probability distributions B and Q can be represented by vectors: π ∈ <|H|+ and ρ ∈ <|H|+ . We
try to estimate PAC-Bayes Multi-class bound for a fixed ρ.

Let κ(ρ) = n−1
∑
h∈H K(h) the observed realization of κ̃(ρ). We define:
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f(ρ) = 1
n

∑
h∈H ρhln

ρh
πh

+ 1
n ln( 1

δ ( (n+s−1)!
(s−1)!n! ))−

∑s
i=1 κi(ρ)ln

∑s
i=1 κi(ρ)

g(p, ρ) = −
∑s
i=1 κi(ρ)lnpi(h)

We determine a Gibbs Risk bound B̄(ρ) by looking for probabilities which maximize this risk :

B̄(ρ) = Maxpq
T p (10)

S.t. g(p, ρ) ≥ f(ρ)∑s
i=1 pi = 1

p ≥ 0

The first constraint of the mathematical program is equivalent to:

n.kl(κ‖p) ≤ KL(ρ‖π) + ln( 1
δ ( (n+s−1)!

(s−1)!n! ))

Then B̄(ρ) = r(κ(ρ), ρ). The optimal solution p∗(ρ) of the mathematical programm gives for each ρ
a pessimist estimation of p̄(ρ) with an uniform confidence level 1− δ.

The function g(., ρ) is strictly positive, differentiable with a negative gradient and strictly convex.
So the first constraint has the form (convex function <= constant), furthermore, second and third
constraints are linear so the feasible region is convex. The objective function to maximize is concave
so the mathematical program (10) is convex.
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