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How does SGD work?

» Growing body of work arguing that SGD performs implicit
regularization

> Problem: No matching generalization bounds that are nonvacuous
when applied to real data and networks.

> We focus on “flat minima” — weights w such that training error is
“insensitive” to “large” perturbations

» We show the size/flatness/location of minima found by SGD on
MNIST imply generalization using PAC-Bayes bounds

» Focusing on MNIST, we show how to compute generalization bounds
that are nonvacuous for stochastic networks with millions of weights.
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How does SGD work?

» Growing body of work arguing that SGD performs implicit
regularization

> Problem: No matching generalization bounds that are nonvacuous
when applied to real data and networks.

> We focus on “flat minima” — weights w such that training error is
“insensitive” to “large” perturbations

» We show the size/flatness/location of minima found by SGD on
MNIST imply generalization using PAC-Bayes bounds

» Focusing on MNIST, we show how to compute generalization bounds
that are nonvacuous for stochastic networks with millions of weights.

» We obtain our (data-dependent, PAC-Bayesian) generalization
bounds via a fair bit of computation with SGD. Our approach is a
modern take on Langford and Caruana (2002).
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Nonvacuous generalization bounds

risk:  Lp(h) = E(x,)~p[l(h(x),y)], D unknown

empirical risk: Ls(h) = %Zilg(h(xi)7yi)7 S= {(thl)w"v(xma)/m)}
generalization error:  Lp(h) — Ls(h)

) SNIP’Dm(LD(B) — Ls(h) < e(H,m,s,S, k) ) >1-4

generalization err. bound

error —>
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SGD is X and X implies generalization

SGD s X X = ywa\\‘tnha«

“SGD is Empirical Risk Minimization for large enough networks”
“SGD is (Implicit) Regularized Loss Minimization”
“SGD is Approximate Bayesian Inference”

No statement of the form “SGD is X" explains generalization in deep
learning until we know that X implies generalization under real-world

conditions.
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SGD is (not simply) empirical risk minimization

Computer Science > Learning

In Search of the Real Inductive Bias: On the Role of Implicit Regularization in
Deep Learning

0.071 Behnam Neyshabur, Ryota Tomioka, Nathan Srebro
0.06
8 005 Training error of SGD at
Y ool convergence.
0.03f
002l Test error at convergence
oot and for early stopping
R identical.

4 8 16 32 64 128 256 512 1K 2K 4K
H

SGD ~ Empirical Risk Minimization  argmin,,c,, Ls(w)

MNIST has 60,000 training data

Two-layer fully connected RelLU network has >1m parameters
= PAC bounds are vacuous

—> PAC bounds can’t explain this curve
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Our focus: Statistical Learning Aspect

SGD s X X = 81'\2(‘0«\\‘&5.41&'\

On MNIST, with realistic networks, . ..

» VC bounds don't imply generalization

» Classic Margin + Norm-bounded Rademacher Complexity Bounds
don’t imply generalization

» Being “Bayesian” does not necessarily imply generalization (sorry!)

Using PAC-Bayes bounds, we show that size/flatness/location of
minima, found by SGD on MNIST, imply generalization for MNIST.

Our bounds require a fair bit of computation/optimization to evaluate.
Strictly speaking, they bound the error of a random perturbation of the
SGD solution.
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Flat minima...
training error in flat minima is “insensitive” to “large” perturbations

N

(Hochreiter and Schmidhuber, 1997)
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Flat minima...

training error in flat minima is “insensitive” to “large” perturbations

(Hochreiter and Schmidhuber, 1997)

meets the PAC-Bayes theorem (McAllister)

z8(m)

VD VP P [vo A(Ls(Q), Lp(Q)) < %] S

For any data distribution, D, i.e., no assumptions,
For any “prior” randomized classifier P, even nonsense,
with high probability over m i.i.d. samples S~Dm,

For any “posterior” randomized classifier Q, not nec. Bayes rule,

1
Generalization error of Q bounded approximately by EKL(QHP)
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Controlling generalization error of randomized classifiers

Let H be a hypothesis class of binary classifiers R — {—1,1}.
A randomized classifier is a distribution @ on H. lts risk is

Lp(Q) = E_[Lo(h)

Among the sharpest generalization bounds for randomized classifiers are
PAC-Bayes bounds (McAllester, 1999).

Theorem (PAC-Bayes (Catoni, 2007)). .

Let 6 > 0 and m € N and assume Lp is bounded. Then

KL(Q||P) + log 1
VP, VD, SN]P’Dm(VQ, Ln(Q) < 2Ls(Q) + 2 K ”n? gﬁ) >1-
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Our approach

given mi.i.d. data S ~ D™
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Our approach
/f’—/ g \\\ given mi.i.d. data S ~ D™
[ empirical error surface
W — Ls(hw)
\R\ /%
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Our approach

given mi.i.d. data S ~ D™

empirical error surface
w — Ls(hw)
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Our approach

given mi.i.d. data S ~ D™

empirical error surface
w — Ls(hw)

o wsap € RA472000
weights learned by SGD on MNIST
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Our approach

given mi.i.d. data S ~ D™

empirical error surface
w — Ls(hw)

o wsap € RA472000
weights learned by SGD on MNIST

(&) é = N(WSGD + W/7 Z/)
stochastic neural net
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Our approach

given mi.i.d. data S ~ D™

empirical error surface
w — Ls(hw)

o wsap € RA472000
weights learned by SGD on MNIST

(&) é = N(WSGD + W/7 Z/)
stochastic neural net

generalization /error bound: VD < ]PDm(LD(@) < 0.17) > 0.95
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Optimizing PAC-Bayes bounds

Given data S, we can find a provably good classifier @ by optimizing the
PAC-Bayes bound w.r.t. Q.

For Catoni's PAC-Bayes bound, the optimization problem is of the form

sgp —7Ls(Q) — KL(Q||P).

B exp(—7Ls(w))
 Jexp(—7Ls(w))P(dw)’
generalized Bayes rule
Observation. Under log loss and 7 = m, the term —7Ls(w) is the
expected log likelihood under @ and the objective is the ELBO.

Lemma. Optimal Q satisfies j—g(w)

Lemma. Iog/exp(—TLs(w))P(dw) = S%p —7Ls(Q) — KL(Q[|P).

Observation. Under log loss and 7 = m, |.h.s. is log marginal likelihood.
Cf. Zhang 2004, 2006, Alquier et al. 2015, Germain et al. 2016.
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PAC-Bayes Bound optimization
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PAC-Bayes Bound optimization

1
inf Ls(Q)+ KL(QIIP) + log 5
Q m
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PAC-Bayes Bound optimization

1
inf Ls(Q)+ KL(Q||P)+|0g6
Q m

Let [s(Q) > Ls(Q) with Ls differentiable.
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PAC-Bayes Bound optimization

1
inf Ls(Q)+ KL(Q||P)+|0g6
Q m

Let [s(Q) > Ls(Q) with Ls differentiable.
inf mls(Q)+KL(Q|P)
Q
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PAC-Bayes Bound optimization

1
inf Ls(Q)+ KL(Q||P)—|—Iog6
Q m

Let [s(Q) > Ls(Q) with Ls differentiable.
inf mls(Q)+KL(Q|P)
Q

Let Qu,s = N (w, diag(s)).
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PAC-Bayes Bound optimization

1
inf Ls(Q)+ KL(Q||P)—|—Iog6
Q m

Let [s(Q) > Ls(Q) with Ls differentiable.
inf mls(Q)+KL(Q|P)
Q

Let Qu,s = N (w, diag(s)).
min  m Ls(Qu,s) + KL(Qw.s||P)

weR?
d
seERL
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PAC-Bayes Bound optimization

1
inf Ls(Q)+ KL(Q||P)—|—Iog6
Q m

Let [s(Q) > Ls(Q) with Ls differentiable.
inf mls(Q)+KL(Q|P)
Q

Let Qu,s = N (w, diag(s)).
min  m Ls(Qu,s) + KL(Qw.s||P)

weR?
d
seERL

Take P = N(wo, A lg) with A = cexp{—j/b}.
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PAC-Bayes Bound optimization

1
inf Ls(Q)+ KL(Q||P)—|—Iog5
Q m

Let [s(Q) > Ls(Q) with Ls differentiable.
inf mls(Q)+KL(Q|P)
Q

Let Qu,s = N (w, diag(s)).
min  m Ls(Qu,s) + KL(Qw.s||P)

weR?
d
seERL

Take P = N(wo, A lg) with A = cexp{—j/b}.

min  mLs(Qu.s) + KL(Qu.s| [N (wo, M) +2log(blog g)
weR?

SEE]REI+
A€(0,¢)
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PAC-Bayes Bound optimization

1
inf Ls(Q)+ KL(Q||P)—|—Iog5
Q m

Let [s(Q) > Ls(Q) with Ls differentiable.
inf mls(Q)+KL(Q|P)
Q

Let Qu,s = N (w, diag(s)).
min  m Ls(Qu,s) + KL(Qw.s||P)

weR?
d
seERL

Take P = N(wo, A lg) with A = cexp{—j/b}.

min  mLs(Qu.s) + KL(Qu.s| [N (wo, M) +2log(blog g)
weR?
SEE]REI+

1.1 1
X€E(0,) E(X||s||1+x||w— wol|3 + dlog A — 14 - log s — d).
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Numerical generalization bounds on MNIST

We have shown that type of flat minima found in practice can be

# Hidden Layers

Train error
Test error

SNN train error
SNN test error

PAC-Bayes bound

KL divergence
# parameters
VC dimension

1

0.001
0.018

0.028
0.034
0.161

5144
472k
26m

2

0.000
0.016

0.028
0.033
0.186

6534
832k
66m

turned into a generalization guarantee.

3

0.000
0.013

0.027
0.032
0.201
7861

1193k
121m

1 (R)

0.007
0.508

0.112
0.503

1.352

201131
472k
26m

Bounds are loose, but only nonvacuous bounds in this setting.
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Actually, SGD is pretty dangerous
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Actually, SGD is pretty dangerous

2.5 . . - -
=—a true labels . L .

20 o—o random labels || » SGD achieves zero training error reliably
@ #—= shuffled pixels > Despite no explicit regularization, training and
215} = random pixels |{ test error very close
[} .
& o $—¢ gaussian » Explicit regularization has minor effect
[ . . e
H > SGD can reliably obtain zero training error on

0s randomized labels

> Hence, Rademacher complexity of model class is
0.0 near maximal w.h.p.
0 5 10 15 20 25

thousand steps
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Entropy-SGD (Chaudhari et al., 2017)

Entropy-SGD replaces stochastic gradient descent on Ls by stochastic

gradient ascent applied to the optimization problem:

arg max F, . (w; S),
weRd

where F, -(w; S) = Iog/

— Original landscape
—— Negative local entropy : 4 = 0.001

- Negative local entropy : < = 0.00005 |

[

{

Xrobust

e /
xcand@?ﬁ S
‘.\
R

st

exp {—TLS(W’) — T%HW’ — w||§} dw’.

The local entropy F, -(-; S) emphasizes flat minima of Ls.
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Entropy-SGD optimizes PAC-Bayes bound w.r.t. prior

Entropy-SGD optimizes the local entropy

Forlw: S) = tog [

exp {—TLS(W') - T%HW/ - w||§} dw’.
RP
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Entropy-SGD optimizes PAC-Bayes bound w.r.t. prior

Entropy-SGD optimizes the local entropy

Fo.rlwi S) = log |

exp {—TLS(W') - T%HW/ - w||§} dw’.
RP

Theorem. Maximizing F, -(w;S) w.r.t. w corresponds to minimizing
PAC-Bayes risk bound w.r.t. prior's mean w.
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Entropy-SGD optimizes PAC-Bayes bound w.r.t. prior

Entropy-SGD optimizes the local entropy

Fyr(w;S) = Iog/ exp {—TLS(W') - TlHW/ - w||§} dw’.
RP 2

Theorem. Maximizing F, -(w;S) w.r.t. w corresponds to minimizing
PAC-Bayes risk bound w.r.t. prior's mean w.

Theorem. Let #(S) be an e-differentially private distribution. Then

7 n2m max{In 2, me?
vp. B ((4Q) KL(Ls(Q)Lp(@)) < F AL ENEIn2ms Zmaxtin s, me)

)21—&

We optimize F, -(w; S) using SGLD, obtaining (e, 6)-differential privacy.

SGLD is known to converge weakly to the e-differentially private
exponential mechanism. Our analysis makes a coarse approximation:
privacy of SGLD is that of exponential mechanism.
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Conclusion

> We show that the size/flatness/location of minima (that were found
by SGD on MNIST) imply generalization using PAC-Bayes bounds;

» We show Entropy-SGD optimizes the prior in a PAC-Bayes bound,
which is not valid;

> We give a differentially private version of PAC-Bayes theorem and
modify Entropy-SGD so that prior is privately optimized.
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