A Strongly Quasiconvex PAC-Bayesian Bound

Yevgeny Seldin

NIPS-2017 Workshop on (Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights

Based on joint work with Niklas Thiemann, Christian Igel, and Olivier Wintenberger, ALT 2017
Quick Summary

Two major ways to convexify classification with 0-1 loss

- Convexify the loss
- Work in the space of distributions over \mathcal{H} (PAC-Bayes)
Quick Summary

Two major ways to convexify classification with 0-1 loss

- Convexify the loss
- Work in the space of distributions over \mathcal{H} (PAC-Bayes)

We propose

- A relaxation of the PAC-Bayes-kl bound (Seeger, 2002) and an alternating minimization procedure
- Sufficient conditions for strong quasiconvexity of the bound
 - which guarantee convergence to the global minimum
- Construction of a hypothesis space tailored for the bound
- In our experiments rigorous minimization of the bound was competitive with cross-validation in tuning the trade-off between complexity and empirical performance
Outline

A Very Quick Recap of PAC-Bayesian Analysis

A Strongly Quasiconvex PAC-Bayesian Bound

Construction of a Hypothesis Set

Experiments
Randomized Classifiers

Let ρ be a distribution over \mathcal{H}

Randomized Classifiers

At each round of the game:

1. Pick $h \in \mathcal{H}$ according to $\rho(h)$
2. Observe x
3. Return $h(x)$
Randomized Classifiers

Let ρ be a distribution over \mathcal{H}

Randomized Classifiers
At each round of the game:

1. Pick $h \in \mathcal{H}$ according to $\rho(h)$
2. Observe x
3. Return $h(x)$

Expected loss of ρ

$$\mathbb{E}_{h \sim \rho}[L(h)] = \mathbb{E}_{\rho}[L(h)]$$

Empirical loss of ρ on a sample S

$$\mathbb{E}_{h \sim \rho}[\hat{L}(h, S)] = \mathbb{E}_{\rho} \left[\hat{L}(h, S) \right]$$
Approximation-Estimation Perspective
(Bias-Variance)

\[
\hat{L}(h, S) \approx \hat{L}(h', S) \quad \text{and} \quad \pi(h) \approx \pi(h') \quad \Rightarrow \quad \rho(h) \approx \rho(h')
\]

- Reduced variance at the same bias level

Selection from a small \(\mathcal{H} \)
Selection from a large \(\mathcal{H} \)
Approximation-Estimation Perspective
(Bias-Variance)

Randomized Classification

- Avoid selection when not necessary
 - If $\hat{L}(h, S) \approx \hat{L}(h', S)$ and $\pi(h) \approx \pi(h')$, take $\rho(h) \approx \rho(h')$
 - Reduced variance at the same bias level
Kullback-Leibler (KL) divergence $= \text{Relative Entropy}$

KL divergence

Let ρ and π be two distributions over \mathcal{H}

$$KL(\rho \| \pi) = \mathbb{E}_{\rho} \left[\ln \frac{\rho}{\pi} \right]$$

Binary kl divergence

For two Bernoulli random variables with biases p and q

$$\text{kl}(p \| q) = KL(\left[p, 1 - p \right] \| \left[q, 1 - q \right])$$
PAC-Bayes-kl Inequality

Theorem (Seeger, 2002)

For any prior π over \mathcal{H} and any $\delta \in (0, 1)$, with probability greater than $1 - \delta$ over a random draw of a sample S, for all distributions ρ over \mathcal{H} simultaneously:

$$\text{kl} \left(\mathbb{E}_\rho \left[\hat{L}(h, S) \right] \middle\| \mathbb{E}_\rho \left[L(h) \right] \right) \leq \frac{\text{KL}(\rho\|\pi) + \ln \frac{2\sqrt{n}}{\delta}}{n}.$$
PAC-Bayes-kl Inequality

Theorem (Seeger, 2002)

For any prior \(\pi \) over \(\mathcal{H} \) and any \(\delta \in (0, 1) \), with probability greater than \(1 - \delta \) over a random draw of a sample \(S \), for all distributions \(\rho \) over \(\mathcal{H} \) simultaneously:

\[
\text{kl} \left(\mathbb{E}_\rho \left[\hat{L}(h, S) \right] \bigg\| \mathbb{E}_\rho [L(h)] \right) \leq \frac{\text{KL}(\rho \| \pi) + \ln \frac{2\sqrt{n}}{\delta}}{n}.
\]

Challenge

- The bound is not convex in \(\rho \)
- Common heuristic: replace with a parametrized tradeoff \(\beta n \mathbb{E}_\rho \left[\hat{L}(h, S) \right] + \text{KL}(\rho \| \pi) \) and tune \(\beta \) by cross-validation
Outline

A Very Quick Recap of PAC-Bayesian Analysis

A Strongly Quasiconvex PAC-Bayesian Bound

Construction of a Hypothesis Set

Experiments
Theorem (PAC-Bayes-\(\lambda\) Inequality)

For any prior \(\pi\) and any \(\delta \in (0, 1)\), with probability greater than \(1 - \delta\), for all \(\rho\) and \(\lambda \in (0, 2)\) simultaneously:

\[
\mathbb{E}_\rho [L(h)] \leq \frac{\mathbb{E}_\rho \left[\hat{L}(h, S) \right]}{1 - \frac{\lambda}{2}} + \frac{KL(\rho\|\pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2}\right)n}.
\]
Relaxation of PAC-Bayes-kl
Based on refined Pinsker’s inequality

Theorem (PAC-Bayes-λ Inequality)

For any prior π and any $\delta \in (0, 1)$, with probability greater than $1 - \delta$, for all ρ and $\lambda \in (0, 2)$ simultaneously:

$$
\mathbb{E}_\rho [L(h)] \leq \mathbb{E}_\rho \left[\hat{L}(h, S) \right] \leq \frac{\mathbb{E}_\rho \left[\hat{L}(h, S) \right]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho\|\pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2}\right) n}.
$$

For the optimal λ this leads to

$$
\mathbb{E}_\rho [L(h)] \leq \mathbb{E}_\rho \left[\hat{L}(h, S) \right] + \sqrt{\frac{2\mathbb{E}_\rho \left[\hat{L}(h, S) \right] \left(\text{KL}(\rho\|\pi) + \ln \frac{2\sqrt{n}}{\delta}\right)}{n} + \frac{2 \left(\text{KL}(\rho\|\pi) + \ln \frac{2\sqrt{n}}{\delta}\right)}{n}}
$$

“Fast convergence rate”
Alternating Minimization of PAC-Bayes-λ

\[\mathbb{E}_{\rho} [L(h)] \leq \frac{\mathbb{E}_\rho \left[\hat{L}(h, S) \right]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho || \pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2}\right) n} \]

\[\mathcal{F}(\rho, \lambda) \]
Alternating Minimization of PAC-Bayes-\(\lambda\)

\[
\mathbb{E}_\rho [L(h)] \leq \frac{\mathbb{E}_\rho [\hat{L}(h, S)]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho \| \pi) + \ln \frac{2\sqrt{n}}{\delta} + \frac{\lambda}{2} n}{\lambda (1 - \frac{\lambda}{2}) n}
\]

\(\mathcal{F}(\rho, \lambda)\)

- For a fixed \(\lambda\) the bound is convex in \(\rho\) and minimized by

\[
\rho\lambda(h) = \frac{\pi(h)e^{-\lambda n\hat{L}(h,S)}}{\mathbb{E}_\pi [e^{-\lambda n\hat{L}(h',S)}]}
\]
Alternating Minimization of PAC-Bayes-λ

$$\mathbb{E}_\rho [L(h)] \leq \mathbb{E}_\rho \left[\hat{L}(h, S) \right] \leq \frac{\mathbb{E}_\rho \left[\hat{L}(h, S) \right]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho \| \pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2} \right) n} \quad \mathcal{F}(\rho, \lambda)$$

- For a fixed λ the bound is convex in ρ and minimized by

$$\rho_\lambda(h) = \frac{\pi(h)e^{-\lambda n\hat{L}(h, S)}}{\mathbb{E}_\pi \left[e^{-\lambda n\hat{L}(h', S)} \right]}$$

- For a fixed ρ the bound is convex in λ and minimized by

$$\lambda = \frac{2}{\sqrt{\frac{2n\mathbb{E}_\rho \left[\hat{L}(h, S) \right]}{\text{KL}(\rho \| \pi) + \ln \frac{2\sqrt{n}}{\delta}}} + 1 + 1}$$
Alternating Minimization of PAC-Bayes-λ

$$
\mathbb{E}_\rho [L(h)] \leq \frac{\mathbb{E}_\rho \left[\hat{L}(h, S) \right]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho \| \pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2} \right) n}
$$

\[\mathcal{F}(\rho, \lambda)\]

- For a fixed λ the bound is convex in ρ and minimized by

$$
\rho_{\lambda}(h) = \frac{\pi(h) e^{\lambda n \hat{L}(h, S)}}{\mathbb{E}_\pi \left[e^{\lambda n \hat{L}(h', S)} \right]}
$$

- For a fixed ρ the bound is convex in λ and minimized by

$$
\lambda = \frac{2}{\sqrt{\frac{2n \mathbb{E}_\rho \left[\hat{L}(h, S) \right]}{\text{KL}(\rho \| \pi) + \ln \frac{2\sqrt{n}}{\delta}} + 1 + 1}}
$$

- $\mathcal{F}(\rho, \lambda)$ is not necessarily jointly convex in ρ and λ
Simplification 1

$$\mathcal{F}(\rho, \lambda) = \mathbb{E}_\rho \left[\hat{L}(h, S) \right] + \frac{\text{KL}(\rho \| \pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda (1 - \frac{\lambda}{2}) n}$$

$$\rho \lambda(h) = \frac{\pi(h) e^{-\lambda n \hat{L}(h, S)}}{\mathbb{E}_\pi \left[e^{-\lambda n \hat{L}(h', S)} \right]}$$
Simplification 1

\[F(\rho, \lambda) = \mathbb{E}_\rho \left[\hat{L}(h, S) \right] + \frac{\text{KL}(\rho || \pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2}\right) n} \]

\[\rho_\lambda(h) = \frac{\pi(h) e^{-\lambda n \hat{L}(h, S)}}{\mathbb{E}_\pi \left[e^{-\lambda n \hat{L}(h', S)} \right]} \]

\[F(\lambda) = F(\rho_\lambda, \lambda) = \frac{\mathbb{E}_{\rho_\lambda} \left[\hat{L}(h, S) \right]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho_\lambda || \pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2}\right) n} \]
Simplification 1

\[\mathcal{F}(\rho, \lambda) = \frac{\mathbb{E}_\rho \left[\hat{L}(h, S) \right]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho \parallel \pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2}\right) n} \]

\[\rho_\lambda(h) = \frac{\pi(h)e^{-\lambda n\hat{L}(h', S)}}{\mathbb{E}_\pi \left[e^{-\lambda n\hat{L}(h', S)} \right]} \]

\[\mathcal{F}(\lambda) = \mathcal{F}(\rho_\lambda, \lambda) = \frac{\mathbb{E}_{\rho_\lambda} \left[\hat{L}(h, S) \right]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho_\lambda \parallel \pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2}\right) n} \]

One-dimensional function
Simplification 2

\[\mathcal{F}(\lambda) = \mathcal{F}(\rho_{\lambda}, \lambda) = \frac{\mathbb{E}_{\rho_{\lambda}} \left[\hat{L}(h, S') \right]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho_{\lambda} \parallel \pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2}\right) n} \]

\[\rho_{\lambda}(h) = \frac{\pi(h) e^{-\lambda n \hat{L}(h, S)}}{\mathbb{E}_{\pi} \left[e^{-\lambda n \hat{L}(h', S)} \right]} \]
Simplification 2

\[\mathcal{F}(\lambda) = \mathcal{F}(\rho_\lambda, \lambda) = \frac{\mathbb{E}_{\rho_\lambda} \left[\hat{L}(h, S) \right]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho_\lambda \| \pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2}\right)n} \]

\[\rho_\lambda(h) = \frac{\pi(h)e^{-\lambda n\hat{L}(h,S)}}{\mathbb{E}_\pi \left[e^{-\lambda n\hat{L}(h',S)} \right]} \]

\[\text{KL}(\rho_\lambda \| \pi) = \mathbb{E}_{\rho_\lambda} \left[\ln \frac{\rho_\lambda(h)}{\pi(h)} \right] = \mathbb{E}_{\rho_\lambda} \left[\ln \frac{e^{-n\lambda \hat{L}(h,S)}}{\mathbb{E}_\pi \left[e^{-n\lambda \hat{L}(h',S)} \right]} \right] \]

\[= -n\lambda \mathbb{E}_{\rho_\lambda} \left[\hat{L}(h, S) \right] - \ln \mathbb{E}_\pi \left[e^{-n\lambda \hat{L}(h,S)} \right] \]
Simplification 2

\[
\mathcal{F}(\lambda) = \mathcal{F}(\rho_\lambda, \lambda) = \frac{\mathbb{E}_{\rho_\lambda} \left[\hat{L}(h, S) \right]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho_\lambda \| \pi) + \ln \frac{2\sqrt{n}}{\delta}}{\lambda \left(1 - \frac{\lambda}{2} \right) n}
\]

\[
\rho_\lambda(h) = \frac{\pi(h) e^{-\lambda n \hat{L}(h, S)}}{\mathbb{E}_\pi \left[e^{-\lambda n \hat{L}(h', S)} \right]}
\]

\[
\text{KL}(\rho_\lambda \| \pi) = \mathbb{E}_{\rho_\lambda} \left[\ln \frac{\rho_\lambda(h)}{\pi(h)} \right] = \mathbb{E}_{\rho_\lambda} \left[\ln \frac{e^{-n\lambda \hat{L}(h, S)}}{\mathbb{E}_\pi \left[e^{-n\lambda \hat{L}(h', S)} \right]} \right]
\]

\[
= -n\lambda \mathbb{E}_{\rho_\lambda} \left[\hat{L}(h, S) \right] - \ln \mathbb{E}_\pi \left[e^{-n\lambda \hat{L}(h, S)} \right]
\]

\[
\mathcal{F}(\lambda) = \frac{-\ln \mathbb{E}_\pi \left[e^{-n\lambda \hat{L}(h, S)} \right] + \ln \frac{2\sqrt{n}}{\delta}}{n\lambda(1 - \lambda/2)}
\]
Strong Quasiconvexity - Sufficient Condition

Theorem (Strong Quasiconvexity)

If at least one of the two conditions

\[2 \text{KL}(\rho_\lambda \| \pi) + \ln \frac{4n}{\delta^2} > \lambda^2 n^2 \text{Var}_{\rho_\lambda} \left[\hat{L}(h, S) \right] \]

or

\[\mathbb{E}_{\rho_\lambda} \left[\hat{L}(h, S) \right] > (1 - \lambda)n \text{Var}_{\rho_\lambda} \left[\hat{L}(h, S) \right] \]

is satisfied for all \(\lambda \in \left[\sqrt{\frac{\ln \frac{2\sqrt{n}}{\delta}}{n}}, 1 \right] \), then \(F(\lambda) \) is strongly quasiconvex for \(\lambda \in (0, 1] \) and alternating minimization converges to the global minimum of \(F \).
\[\mathcal{F}(\lambda) = \frac{-\ln \mathbb{E}_\pi \left[e^{-n\lambda \hat{L}(h,S)} \right]}{n\lambda(1 - \lambda/2)} + \ln \frac{2\sqrt{n}}{\delta} \]
“Weak Separation” Sufficient Condition for Strong Quasiconvexity

\[
\hat{L}(h^*, S) + a \quad \hat{L}(h^*, S) + b
\]
“Weak Separation” Sufficient Condition for Strong Quasiconvexity

\[\hat{L}(h^*, S) + a \quad \hat{L}(h^*, S) + b \]

\[\hat{L}(h^*, S) \quad 1 \]

Theorem (Weak Separation)

Let \(\mathcal{H} \) be finite with \(|\mathcal{H}| = m \) and \(\pi(h) \) uniform. Let \(a = \frac{\sqrt{\ln \frac{4n}{\delta^2}}}{n\sqrt{3}} \) and \(b \approx \frac{\ln(3mn)}{\sqrt{n \ln \frac{2\sqrt{n}}{\delta}}} \). If the number of hypotheses for which

\[\hat{L}(h, S) \in \left(\hat{L}(h^*, S) + a, \hat{L}(h^*, S) + b \right) \]

is at most \(\frac{e^2}{12} \ln \frac{4n}{\delta^2} \) then \(\mathcal{F}(\lambda) \) is strongly quasiconvex and alternating minimization converges to the global minimum.
Proof Highlights

By the Strong Quasiconvexity Theorem, if $\text{Var}_{\rho \lambda} \left[\hat{L}(h, S) \right]$ is “small” then $\mathcal{F}(\lambda)$ is strongly quasiconvex.

Let $\Delta_h = \hat{L}(h, S) - \hat{L}(h^*, S)$

$$
\text{Var}_{\rho \lambda} \left[\hat{L}(h, S) \right] \leq \mathbb{E}_{\rho \lambda} \left[\Delta_h^2 \right] = \sum_h \rho \lambda(h) \Delta_h^2
$$

$$
= \sum_h \Delta_h^2 e^{-n\lambda \Delta_h} \Bigg/ \sum_h e^{-n\lambda \Delta_h}
$$
Breaking the Quasiconvexity

- It is possible to break the quasiconvexity...
- ... but one has to work hard for it
It is possible to break the quasiconvexity...

... but one has to work hard for it

For example, taking $n = 200$, $\delta = 0.25$, $m = 2.7 \cdot 10^6$, $\Delta_h = 0.1$ and uniform π breaks it
It is possible to break the quasiconvexity...

... but one has to work hard for it

For example, taking $n = 200$, $\delta = 0.25$, $m = 2.7 \cdot 10^6$, $\Delta_h = 0.1$ and uniform π breaks it

In all our experiments $\mathcal{F}(\lambda)$ was convex even when the “weak separation” sufficient condition was violated

So it might be possible to relax the sufficient condition further
Outline

A Very Quick Recap of PAC-Bayesian Analysis

A Strongly Quasiconvex PAC-Bayesian Bound

Construction of a Hypothesis Set

Experiments
Computation of the normalization of ρ_λ can be prohibitively expensive

$$\rho_\lambda(h) = \frac{\pi(h)e^{-\lambda n \hat{L}(h,S)}}{\mathbb{E}_\pi \left[e^{-\lambda n \hat{L}(h',S)} \right]}$$
Challenge

Computation of the normalization of ρ_λ can be prohibitively expensive

$$\rho_\lambda(h) = \frac{\pi(h)e^{-\lambda n\hat{L}(h,S)}}{\mathbb{E}_\pi \left[e^{-\lambda n\hat{L}(h',S)} \right]}$$

Parametrization of ρ may break the convexity
Challenge

Computation of the normalization of ρ_λ can be prohibitively expensive

$$
\rho_\lambda(h) = \frac{\pi(h) e^{-\lambda n \hat{L}(h, S)}}{\mathbb{E}_\pi \left[e^{-\lambda n \hat{L}(h', S)} \right]} = \frac{\pi(h) e^{-\lambda n \hat{L}(h, S)}}{\sum_{h'} \pi(h') e^{-\lambda n \hat{L}(h', S)}}
$$

Parametrization of ρ may break the convexity

Solution

- Work with finite \mathcal{H}
- We need a “powerful” finite \mathcal{H}
Construction of a finite sample-dependent \mathcal{H}

- Select $m = |\mathcal{H}|$ subsamples of r points each
- Train a model h on r points and validate on $n - r$ points
- Validation loss: $\hat{L}^{\text{val}}(h)$

Adapted Bound

$E_{\rho}[L(h)] \leq E_{\rho}[\hat{L}^{\text{val}}(h, S)] + \frac{1}{2} KL(\rho \parallel \pi) + \ln n - r + 1 \delta(n - r) \lambda(1 - \lambda^2)$

Special Case: k-fold cross-validation

Most computational advantage is achieved by "inverse CV"
Construction of a finite sample-dependent \mathcal{H}

- Select $m = |\mathcal{H}|$ subsamples of r points each
- Train a model h on r points and validate on $n - r$ points
- Validation loss: $\hat{L}^{\text{val}}(h)$

Adapted Bound

$$
\mathbb{E}_\rho [L(h)] \leq \frac{\mathbb{E}_\rho [\hat{L}^{\text{val}}(h, S)]}{1 - \frac{\lambda}{2}} + \frac{\text{KL}(\rho \| \pi) + \ln \frac{n-r+1}{\delta}}{(n-r)\lambda (1 - \frac{\lambda}{2})}
$$
Construction of a finite sample-dependent \mathcal{H}

- Select $m = |\mathcal{H}|$ subsamples of r points each
- Train a model h on r points and validate on $n - r$ points
- Validation loss: $\hat{L}_{\text{val}}(h)$

Adapted Bound

$$\mathbb{E}_\rho [L(h)] \leq \mathbb{E}_\rho \left[\hat{L}_{\text{val}}(h, S) \right] + \frac{\text{KL}(\rho || \pi) + \ln \frac{n-r+1}{\delta}}{(n-r)\lambda \left(1 - \frac{\lambda}{2}\right)}$$

Special Case: k-fold cross-validation
Most computational advantage is achieved by “inverse CV”
Outline

A Very Quick Recap of PAC-Bayesian Analysis

A Strongly Quasiconvex PAC-Bayesian Bound

Construction of a Hypothesis Set

Experiments
Experiments

We compare

- Kernel-SVM trained by cross-validation
- ρ-weighting of multiple “weak” SVMs trained on $d + 1$ samples

More precisely, we apply ρ-weighted aggregation

$$MV_\rho(x) = \text{sign}\left(\sum h_\rho(h(x))\right)$$

but in our case there was no significant difference between $L(MV_\rho)$ and $E_\rho[L(h)]$.
Experiments

We compare

- Kernel-SVM trained by cross-validation
- ρ-weighting of multiple “weak” SVMs trained on $d + 1$ samples
 - More precisely, we apply ρ-weighted aggregation

$$MV_\rho(x) = \text{sign} \left(\sum_h \rho(h) h(x) \right)$$

but in our case there was no significant difference between $L(MV_\rho)$ and $\mathbb{E}_\rho [L(h)]$
Rough Runtime Comparison

k-fold cross-validation of kernel SVMs

\[k \left(\left(n^{2+} \right)_{\text{training}} + V_{\text{validation}} \right) \approx kn^{2+} \]
Rough Runtime Comparison

\(k \)-fold cross-validation of kernel SVMs

\[
k \left(\frac{n^{2+}}{\text{training}} + \frac{V}{\text{validation}} \right) \approx kn^{2+}
\]

PAC-Bayesian aggregation of kernel SVMs

For \(r = d + 1 \) and \(m = n \):

\[
m \left(\frac{r^{2+}}{\text{training}} + \frac{rn}{\text{validation}} + \frac{A}{\text{aggregation}} \right) \approx mrn \approx dn^2
\]
Rough Runtime Comparison

\(k \)-fold cross-validation of kernel SVMs

\[
k \left(n^{2+} + V \right) \approx k n^{2+}
\]

PAC-Bayesian aggregation of kernel SVMs

For \(r = d + 1 \) and \(m = n \):

\[
m \left(r^{2+} + rn + A \right) \approx mrn \approx dn^2
\]

Computational Speed-up!
Experiments

(a) Ionosphere $n = 200, r = d + 1 = 35$.

(b) Waveform $n = 2000, r = d + 1 = 41$.

(c) Breast cancer $n = 340, r = d + 1 = 11$.

(d) AvsB $n = 1000, r = d + 1 = 17$.
Summary

We proposed

- A relaxation of the PAC-Bayes-kl bound (Seeger, 2002)
- An alternating minimization procedure
- Sufficient conditions for strong quasiconvexity
 - which guarantee convergence to the global minimum
- Construction of \mathcal{H}
- In our experiments rigorous minimization of the bound was competitive with cross-validation in tuning the trade-off between complexity and empirical performance
We proposed

- A relaxation of the PAC-Bayes-kl bound (Seeger, 2002)
- An alternating minimization procedure
- Sufficient conditions for strong quasiconvexity
 - which guarantee convergence to the global minimum
- Construction of \mathcal{H}
- In our experiments rigorous minimization of the bound was competitive with cross-validation in tuning the trade-off between complexity and empirical performance

Rigorous minimization of a theoretical bound competitive with cross-validation!
What’s next?

Improved Sufficient Conditions

- In practice the bound was strongly convex even when the “weak separation” sufficient condition was violated.
- Relax the sufficient condition
 - We have dropped some terms when going from the Strong Quasiconvexity Theorem to the Weak Separation Condition.
Theorem (Strong Quasiconvexity)

If at least one of the two conditions

\[2 \text{KL}(\rho_\lambda \| \pi) + \ln \frac{4n}{\delta^2} > \lambda^2 n^2 \text{Var}_{\rho_\lambda} \left[\hat{L}(h, S) \right] \]

or

\[\mathbb{E}_{\rho_\lambda} \left[\hat{L}(h, S) \right] > (1 - \lambda) n \text{Var}_{\rho_\lambda} \left[\hat{L}(h, S) \right] \]

is satisfied for all \(\lambda \in \left[\sqrt{\frac{\ln \frac{2\sqrt{n}}{\delta}}{n}}, 1 \right] \), then \(F(\lambda) \) is strongly quasiconvex for \(\lambda \in (0, 1] \) and alternating minimization converges to the global minimum of \(F \).
What’s next?

Improved Sufficient Conditions

- In practice the bound was strongly convex even when the “weak separation” sufficient condition was violated.
- Relax the sufficient condition
 - We have dropped some terms when going from the Strong Quasiconvexity Theorem to the Weak Separation Condition
What’s next?

Improved Sufficient Conditions

- In practice the bound was strongly convex even when the “weak separation” sufficient condition was violated.
- Relax the sufficient condition
 - We have dropped some terms when going from the Strong Quasiconvexity Theorem to the Weak Separation Condition

Improved Analysis of the Weighted Majority Vote

- Combine the results with improved analysis of weighted majority vote (the “C-bound”)
 - Lacasse, Laviolette, Marchand, Germain, and Usunier, NIPS, 2007
 - Laviolette, Marchand, Roy, ICML, 2011
 - Germain, Lacasse, Laviolette, Marchand, Roy, JMLR, 2015