
Simpler PAC-Bayesian Bounds for Hostile
Data

Pierre Alquier*& Benjamin Guedj†

October 23, 2016

Abstract

PAC-Bayesian learning bounds are of the utmost interest to the learning
community. Their role is to connect the generalization ability of an aggre-
gation distribution ρ to its empirical risk and to its Kullback-Leibler diver-
gence with respect to some prior distribution π. Unfortunately, most of the
available bounds typically rely on heavy assumptions such as boundedness
and independence of the observations. This paper aims at relaxing these
constraints and provides PAC-Bayesian learning bounds that hold for depen-
dent, heavy-tailed observations (hereafter referred to as hostile data). In
these bounds the Kullack-Leibler divergence is replaced with a general ver-
sion of Csiszár’s f -divergence. We prove a general PAC-Bayesian bound, and
show how to use it in various hostile settings.

1 Introduction
Learning theory can be traced back to the late 60s and has attracted a great
attention since. We refer to the monographs Devroye et al. (1996) and Vapnik
(2000) for a survey. Most of the literature addresses the simplified case of i.i.d
observations coupled with bounded loss functions. Many bounds on the excess
risk holding with large probability were provided - these bounds are refered to as
PAC learning bounds since Valiant (1984).
In the late 90s, the PAC-Bayesian approach has been pioneered by Shawe-Taylor
and Williamson (1997) and McAllester (1998, 1999). It consists in producing PAC
bounds for a specific class of Bayesian-flavored estimators. Similarly to classi-
cal PAC results, most PAC-Bayesian bounds have been obtained with bounded
loss functions (see Catoni, 2007, for some of the most accurate results). Note
that Catoni (2004) provides bounds for unbouded loss, but still under very strong
exponential moments assumptions. These assumptions were essentially not im-
proved in the most recent works Guedj and Alquier (2013) and Bégin et al. (2016).
The relaxation of the exponential moment assumption is however a theoretical
challenge, with huge practical implications: in many applications of regression,
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there is no reason to believe that the noise is bounded or sub-exponential. Actu-
ally, the belief that the noise is sub-exponential leads to an overconfidence in the
prediction that is actually very harmful in practice, see for example the discus-
sion in Taleb (2007) on finance. Still, thanks to the aforementionned works, the
road to obtain PAC bounds for bounded observations has now become so nice and
comfortable that it might refrain inclinations to explore different settings.
Regarding PAC bounds for heavy-tailed random variables, let us mention three
recent approaches.

• Using the so-called small-ball property, Mendelson and several co-authors
developed in a striking series of papers tools to study the Empirical Risk
Minimizer (ERM) and penalized variants without exponential moment as-
sumption: we refer to their most recent works (Mendelson, 2015; Lecué and
Mendelson, 2016). Under this assumption, Grünwald and Mehta (2016) de-
rived PAC-Bayesian learning bounds.

• Another idea consists in using robust loss functions. This leads to better
confidence bounds than the previous approach, but at the price of replacing
the ERM by a more complex estimator (Audibert and Catoni, 2011; Catoni,
2012; Oliveira, 2013; Giulini, 2015; Catoni, 2016).

• Finally, Devroye et al. (2015), using median-of-means, provide bounds in
probability for the estimation of the mean without exponential moment
assumption. An application to more general regression problems was very
recently proposed by Lugosi and Mendelson (2016).

Leaving the well-marked path of bounded variables led the authors to sophis-
ticated and technical mathematics, but in the end they obtained rates of con-
vergence similar to the ones in bounded cases: this is highly valuable for the
statistical and machine learning community.
Regarding dependent observations, like time series or random fields, PAC and/or
PAC-Bayesian bounds were provided in various settings (Steinwart and Christ-
mann, 2009; Seldin et al., 2012; Alquier and Wintenberger, 2012; Alquier and
Li, 2012; Agarwal and Duchi, 2013; Alquier et al., 2013). However these works
massively relied on concentration inequalities or limit theorems for time series,
for which boundedness or exponential moments are crucial.
This paper shows that a scheme of proof of PAC-Bayesian bounds proposed by Bé-
gin et al. (2016) can be extended to a very general setting, without independence
nor exponential moments assumptions. We would like to stress that this ap-
proach is not comparable to the aforementionned work, and in particular it is
technically far less sophisticated. However, while it leads to sub-optimal rates in
many cases, it allows to derive PAC-Bayesian bounds in settings where no PAC
learning bounds were available before: for example heavy-tailed time series.
Given the simplicity of the main result, we state it in the remaining of this sec-
tion. The other sections are devoted to refinments and applications. Let ` de-
note a generic loss function. The observations are denoted (X1,Y1), . . . , (Xn,Yn).
Note that we do not require the observations to be independent, nor indentically
distributed. We assume that a family of predictors ( fθ,θ ∈ Θ) is chosen. Let
`i(θ)= `[ fθ(X i),Yi], and define the (empirical) risk as

rn(θ)= 1
n

n∑
i=1

`i(θ),
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R(θ)= E[rn(θ)
]
.

Based on the observations, the objective is to build procedures with a small risk
R. While PAC bounds focus on estimators θ̂n that are obtained as functionals
of the sample, the PAC-Bayesian approach studies an aggregation distribution
ρ̂n that depends on the sample. In this case, the objective is to choose ρ̂n such
that

∫
R(θ)ρ̂n(dθ) is small. In order to do so, a crucial point is to choose a refer-

ence probability measure π, often referred to as the prior. In Catoni (2007), the
role of π is discussed in depth: rather than reflecting a prior knowledge on the
parameter space Θ, it should serve as a tool to measure the complexity of Θ.
Let us now introduce the two following key quantities.

Definition 1. For any function f , let

M f ,n =
∫
E
[
f (|rn(θ)−R(θ)|)]π(dθ).

Definition 2. Let f be a convex function with f (1)= 0. The f -divergence between
two distributions ρ and π is defined by

D f (ρ,π)=
∫

f
(

dρ
dπ

)
dπ

when ρ is absolutely continous with respect to π, and

D f (ρ,π)=+∞
otherwise.

Csiszár introduced f -divergences in the 60s, see his recent monograph Csiszár
and Shields (2004, Chapter 4) for a survey.
We use the following notation for recurring functions: φp(x) = xp and ψp(x) =
exp(xp)−1. Consequently Mφp ,n = ∫

E (|rn(θ)−R(θ)|p)π(dθ). As for divergences,
we denote the Kullback-Leibler divergence by K(ρ,π) = D f (ρ,π) when f (x) =
x log(x), and the chi-square divergence χ2(ρ,π)= Dφ2−1(ρ,π).

Theorem 1. Fix p > 1, put q = p
p−1 and fix δ ∈ (0,1). With probability at least

1−δ we have for any aggregation distribution ρ∣∣∣∣∫ Rdρ−
∫

rndρ
∣∣∣∣≤ (

Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p . (1)

The main message of Theorem 1 is that we can compare
∫

rndρ (observable) to∫
Rdρ (unknown, the objective) in terms of two quantities: the moment Mφq ,n

(which depends on the distribution of the data) and the divergence Dφp−1(ρ,π)
(which will reveal itself as a measure of the complexity of the set Θ). The most
important practical consequence is that we have, with large probability, for any
probability measure ρ,

∫
Rdρ ≤

∫
rndρ+

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p . (2)

This is a strong incitement to define our aggregation distribution ρ̂n as the min-
imizer of the right-hand side of (2). The core of the paper will discuss in details
this strategy and other consequences of Theorem 1.
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Proof of Theorem 1. Introduce ∆n(θ) := |rn(θ)−R(θ)|. We follow a scheme of proof
introduced by Bégin et al. (2016) in the bounded setting. We adapt the proof to
the general case:∣∣∣∣∫ Rdρ−

∫
rndρ

∣∣∣∣≤ ∫
∆ndρ =

∫
∆n

dρ
dπ

dπ

≤
(∫
∆

q
ndπ

) 1
q
(∫ (

dρ
dπ

)p
dπ

) 1
p

(Hölder inequality)

≤
(
E
∫
∆

q
ndπ
δ

) 1
q (∫ (

dρ
dπ

)p
dπ

) 1
p

(with probability 1−δ)

≤
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p .

In Section 2 we discuss the divergence term Dφp−1(ρ,π). In particular, we derive
an explicit bound on this term when ρ is chosen in order to concentrate around
the ERM (empirical risk minimizer) θ̂ERM = argminθ∈Θ rn(θ). This is meant to
provide the reader some intuition on the order of magnitude of the divergence
term. In Section 3 we discuss how to control the moment Mφq ,n. We derive
explicit bounds in various examples: bounded and unbounded losses, i.i.d and
dependend observations. In Section 4 we come back to the general case. We
show that it is possible to explicitely minimize the right-hand side in (2). We
then show that Theorem 1 leads to powerful oracle inequalities in the various
statistical settings discussed above, exhibiting explicit rates of convergence.

2 Calculation of the divergence term
The aim of this section is to provide some hints on the order of magnitude of the
divergence term Dφp−1(ρ,π). We start with the example of a finite parameter
space Θ. The following proposition results from straightforward calculations.

Proposition 1. Assume that Card(Θ)= K <∞ and that π is uniform on Θ. Then

Dφp−1(ρ,π)+1= K p−1 ∑
θ∈Θ

ρ(θ)p.

A special case of interest is when ρ = δθ̂ERM
, the Dirac mass concentrated on the

ERM. Then
Dφp−1(δθ̂ERM

,π)+1= K p−1.

Then (1) in Theorem 1 yields the following result.

Proposition 2. Fix p > 1, q = p
p−1 and δ ∈ (0,1). With probability at least 1−δ

we have

R(θ̂ERM)≤ inf
θ∈Θ

{
rn(θ)

}+K1− 1
p

(
Mφq ,n

δ

) 1
q

.

Remark that Dφp−1(ρ,π) seems to be related to the complexity K of the param-
eter space Θ. This intuition can be extended to an infinite parameter space, for
example using the empirical complexity parameter introduced in Catoni (2007).
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Assumption 1. There exists d > 0 such that, for any γ> 0,

π
{
θ ∈Θ :

{
rn(θ)

}≤ inf
θ′∈Θ

rn(θ′)+γ
}
≥ γd .

In many examples, d corresponds to the ambient dimension (see Catoni (2007)
for a thorough discussion). In this case, a sensible choice for ρ, as suggested by
Catoni, is πγ(dθ) ∝ π(dθ)1

[
r(θ)− rn(θ̂ERM)≤ γ]

for γ small enough (in Section 4,
we derive the consequences of Assumption 1 for other aggregation distributions).
We have

Dφp−1(πγ,π)+1≤ γ−d(p−1)

and ∫
rn(θ)dπγ ≤ rn(θ̂ERM)+γ

so Theorem 1 leads to∫
Rdπγ ≤ rn(θ̂ERM)+γ+γ−d(1−1/p)

(
Mφq ,n

δ

) 1
q

.

An explicit optimization with respect to γ leads to the choice

γ=
(
d

(
1− 1

p

)
Mφq ,n

δ

) 1
1+d(1− 1

p )

and consequently to the following result.

Proposition 3. Fix p > 1, q = p
p−1 and δ ∈ (0,1). Under Assumption 1, with

probability at least 1−δ we have,∫
Rdπγ ≤ inf

θ∈Θ
{
rn(θ)

}
+

(
Mφq ,n

δ

) 1
1+d(1− 1

p )


[
d

(
1− 1

p

)] 1
1+d(1− 1

p ) +
[
d

(
1− 1

p

)] −d(1− 1
p )

1+d(1− 1
p )

 .

In order to understand the order of magnitude of the bound, it is now crucial to
understand the moment term Mφq ,n. This is the object of the next section.

3 Bounding the moments

3.1 The i.i.d setting
In general, when the observations are possibly heavy-tailed, we recommend to
use Theorem 1 with q ≤ 2 (which implies p ≥ 2).

Proposition 4. Assume that

s2 =
∫

Var[`1(θ)]π(dθ)<+∞

then

Mφq ,n ≤
(

s2

n

) q
2

.

5



As a conclusion for the case q ≤ 2≤ p, (1) in Theorem 1 becomes:

∫
Rdρ ≤

∫
rndρ+

(
Dφp−1(ρ,π)+1

) 1
p

δ
1
q

√
s2

n
.

Without further assumptions, the rate is optimal as a function of n.

Proof of Proposition 4.

Mφq ,n =
∫
E
(
|rn(θ)−E[rn(θ)]|2 q

2

)
π(dθ)

≤
(∫

E
(|rn(θ)−E[rn(θ)]|2)

π(dθ)
) q

2

≤
(∫

1
n

Var[`1(θ)]π(dθ)
) q

2 =
(

s2

n

) q
2

.

As an example, consider the regression setting with quadratic loss, where we use
linear predictors: X i ∈Rk, Θ=Rk and fθ(·)= 〈·,θ〉. Define a prior π on Θ such that

τ :=
∫

‖θ‖4π(dθ)<∞ (3)

and assume that
κ := 8[E(Y 4

i )+τE(‖X i‖4)]<∞. (4)

Then
`i(θ)= (Yi −〈θ, X i〉)2 ≤ 2

[
Y 2

i +‖θ‖2‖X i‖2]
and so

Var(`i(θ))≤ E(`i(θ)2)≤ 8E
[
Y 4

i +‖θ‖4‖X i‖4]
.

Finally,

s2 =
∫

Var(`i(θ))π(dθ)≤ κ<+∞.

We obtain the following corollary of (1) in Theorem 1 with p = q = 2.

Corollary 1. Fix δ ∈ (0,1). Assume that π is chosen such that (3) holds, and
assume that (4) also holds. With probability at least 1−δ we have for any ρ

∫
Rdρ ≤

∫
rndρ+

√
κ[1+χ2(ρ,π)]

nδ
.

Note that a similar upper bound was proved in Honorio and Jaakkola (2014), yet
only in the case of the 0-1 loss (which is bounded). Also, note that the assumption
on the moments of order 4 is comparable to the one in Audibert and Catoni (2011)
and allow heavy-tailed distributions. Still, in our result, the dependence in δ is
less good than in Audibert and Catoni (2011). So, we end this subsection with
a study of the sub-Gaussian case (wich also includes the bounded case). In this
case, we can use any q ≥ 2 in Theorem 1. The larger q, the better will be the
dependence with respect to δ.
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Definition 3. A random variable U is said to be sub-Gaussian with parameter
σ2 if for any λ> 0,

E
{
exp

[
λ(U −E(U))

]}≤ exp
[
λ2σ2

2

]
.

Proposition 5 (Theorem 2.1 page 25 in Boucheron et al. (2013)). When U is
sub-Gaussian with parameter σ2 then for any q ≥ 2,

E
[
(U −E(U))q]≤ 2

( q
2

)
!(2σ2)

q
2 ≤ 2(qσ2)

q
2 .

A straighforward consequence is the following result.

Proposition 6. Assume that, for any θ, `i(θ) is sub-Gaussian with parameter
σ2 (that does not depend on θ), then 1

n
∑n

i=1`i(θ) is sub-Gaussian with parameter
σ2/n and then, for any q ≥ 2,

Mφq ,n ≤ 2
(

qσ2

n

) q
2

.

As an illustration, consider the case of a finite parameter space, that is card(Θ)=
K <+∞. Following Proposition 2 and Proposition 6, we obtain for any q ≥ 2 and
δ ∈ (0,1), with probability at least 1−δ,

R(θ̂ERM)≤ inf
θ∈Θ

{
rn(θ)

}+σ√
q
n

(
2K
δ

) 1
q

.

Optimization with respect to q leads to q = 2log(2K /δ) and consequently

R(θ̂ERM)≤ inf
θ∈Θ

{
rn(θ)

}+
√

2eσ2 log
( 2K
δ

)
n

.

Without any additional assumption on the loss `, the rate on the right-hand side
is optimal. This is for example proven by Audibert (2009) for the absolute loss.

3.2 Dependent observations
Here we propose to analyze the case where the observations (X i,Yi) are pos-
sibly dependent. It includes the autoregressive case where X i = Yi−1 or X i =
(Yi−1, . . . ,Yi−p).
We remind the following definition. We refer the reader to Doukhan (1994); Rio
(2000) for more details.

Definition 4. The α-mixing coefficients between two σ-algebras F and G are de-
fined by

α(F,G)= sup
A∈F,B∈G

∣∣∣P(A∩B)−P(A)P(B)
∣∣.

Proposition 7 (Classical, see Doukhan (1994) for a proof). We have

α(F,G)= sup
{
Cov(U ,V ),0≤U ≤ 1,0≤V ≤ 1,

U is F-measurable, V is G-measurable
}
.
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For short, define
α j =α[σ(X0,Y0),σ(X j,Y j)].

Let us first consider the bounded case.

Proposition 8. Assume that ` ≤ 1. Assume that (X i,Yi)i∈Z is a stationary pro-
cess, and that it satisfies

∑
j∈Zα j <∞. Then

Mφ2,n ≤ 1
n

∑
j∈Z

α j.

Examples of processes satisfying this assumption are discussed in Doukhan (1994);
Rio (2000). For example, if the (X i,Yi)’s are actually a geometrically ergodic
Markov chain then there exist some c1, c2 > 0 such that α j ≤ c1e−c2| j|. Thus

Mφ2,n ≤ 1
n

2c1

1−e−c2
.

Proof of Proposition 8. We have:

E

[(
1
n

n∑
i=1

`i(θ)−E[`i(θ)]

)2]
= 1

n2

n∑
i=1

n∑
j=1

Cov[`i(θ),` j(θ)]

≤ 1
n2

n∑
i=1

∑
j∈Z

α j−i =
∑

j∈Zα j

n

that does not depend on θ, and so

Mφ2,n =
∫
E

[(
1
n

n∑
i=1

`i(θ)−R(θ)

)2]
π(dθ)≤

∑
j∈Zα j

n
.

Remark 1. Other assumptions than α-mixing can be used. Actually, we see from
the proof that the only requirement to get a bound on Mφ2,n is to control the covari-
ance Cov[`i(θ),` j(θ)]; α-mixing is very stringent as it imposes that we can control
this for any function `i(θ). In the case of a Lipschitz loss, we could actually con-
sider more general conditions like the weak dependence conditions in Dedecker
et al. (2007); Alquier and Wintenberger (2012).

We now turn to the unbounded case.

Proposition 9. Assume that (X i,Yi)i∈Z is a stationary process. Let r ≥ 1 and
s ≥ 2 be any numbers with 1/r+2/s = 1 and assume that∑

j∈Z
α1/r

j <∞

and ∫ {
E
[
`s

i (θ)
]} 2

s π(dθ)<∞.

Then

Mφ2,n ≤ 1
n

(∫ {
E
[
`s

i (θ)
]} 2

s π(dθ)
)(∑

j∈Z
α

1
r
j

)
.
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Proof of Proposition 9. The proof relies on the following property.

Proposition 10 (Doukhan (1994)). For any random variables U and V , resp. F
and G-mesurable, we have

|Cov(U ,V )| ≤ 8α
1
r (F,G)‖U‖s‖V‖t

where 1/r+1/s+1/t = 1.

We use this with U = `i(θ), V = ` j(θ) and s = t. Then

E

[(
1
n

n∑
i=1

`i(θ)−E[`i(θ)]
)2]

= 1
n2

n∑
i=1

n∑
j=1

Cov[`i(θ),` j(θ)]

≤ 1
n2

n∑
i=1

∑
j∈Z

α
1
r
j−i‖`i(θ)‖s‖` j(θ)‖s

≤
{
E
[
`s

i (θ)
]} 2

s
∑

j∈Zα
1
r
j

n
.

As an example, consider auto-regression with quadratic loss, where we use linear
predictors: X i = (1,Yi−1) ∈R2, Θ=R2 and fθ(·)= 〈θ, ·〉. Then

|`i(θ)|3 ≤ 32[Y 6
i +4‖θ‖6(1+Y 6

i−1)]

and so
E
(|`i(θ)|3)≤ 32(1+4‖θ‖6)E

(
Y 6

i
)
.

Taking s = r = 3 in Proposition 9 leads to the following result.

Corollary 2. Fix δ ∈ (0,1). Assume that π is chosen such that∫
‖θ‖6π(dθ)<+∞,

E
(
Y 6

i
)<∞ and

∑
j∈Zα

1
3
j <+∞. Put

ν= 32E (Yi‖)
2
3

∑
j∈Z

α
1
3
j

(
1+4

∫
‖θ‖6π(dθ)

)
.

With probability at least 1−δ we have for any ρ

∫
Rdρ ≤

∫
rndρ+

√
ν[1+χ2(ρ,π)]

nδ
.

This is, up to our knowledge, the first PAC(-Bayesian) bound in the case of a time
series without any boundendess nor exponential moment assumption.
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4 Optimal aggregation distribution and oracle in-
equalities

We start with a reminder of two consequences of Theorem 1: for p > 1, and q =
p/(p−1), with probability at least 1−δ we have for any ρ

∫
Rdρ ≤

∫
rndρ+

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p (5)

and ∫
rndρ ≤

∫
Rdρ+

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p . (6)

In this section we focus on the minimizer ρ̂n of the right-hand side of (5) , and on
its statistical properties.

Definition 5. We define rn = rn(δ, p) as

rn =min
{

u ∈R,
∫

[u− rn(θ)]q
+π(dθ)= Mφq ,n

δ

}
.

Note that such a minimum always exists as the integral is a continuous function
of u, is equal to 0 when u = 0 and →∞ when u →∞. We then define

dρ̂n

dπ
(θ)= [rn − rn(θ)]

1
p−1
+∫

[rn − rn]
1

p−1
+ dπ

. (7)

Proposition 11. Under the assumptions of Theorem 1, with probability at least
1−δ,

rn =
∫

rndρ̂n +
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ̂n,π)+1
) 1

p

=min
ρ


∫

rndρ+
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p


where the minimum holds for any probability distribution ρ over Θ.

Proof of Proposition 11. For any ρ we have

rn −
∫

rndρ =
∫

[rn − rn]dρ

=
∫

[rn − rn]+dρ−
∫

[rn − rn]−dρ

≤
∫

[rn − rn]+dρ =
∫

[rn − rn]+
dρ
dπ

dπ

≤
(∫

[rn − rn]q
+dπ

) 1
q
(∫ (

dρ
dπ

)p
dπ

) 1
p

≤
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p
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where we used Hölder’s inequality and then the definition of rn in the last line.
Moreover, we can check that the two inequalities above become equalities when
ρ = ρ̂n: from (7),

rn −
∫

rndρ̂n =
∫

[rn − rn]dρ̂n =
∫

[rn − rn]+dρ̂n

=
∫

[rn − rn]+ [rn − rn]
1

p−1
+ dπ∫

[rn − rn]
1

p−1
+ dπ

=
∫

[rn − rn]q
+dπ∫

[rn − rn]
1

p−1
+ dπ

=
(∫

[rn − rn]q
+dπ

) 1
p + 1

q∫
[rn − rn]

1
p−1
+ dπ

=
(∫

[rn − rn]q
+dπ

) 1
q

(∫
[rn − rn]

p
p−1
+ dπ

) 1
p

∫
[rn − rn]

1
p−1
+ dπ

=
(
Mφq ,n

δ

) 1
q (∫ (

dρ̂n

dπ

)p
dπ

) 1
p
=

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ̂n,π)+1
) 1

p .

A direct consequence of (5) and (6) is the following result.

Proposition 12. Under the assumptions of Theorem 1, with probability at least
1−δ, ∫

Rdρ̂n ≤ rn ≤ inf
ρ


∫

Rdρ+2
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p

 . (8)

Proof of Proposition 12. First, (5) brings:∫
Rdρ̂n ≤

∫
rndρ̂n +

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ̂n,π)+1
) 1

p

= inf
ρ


∫

rndρ+
(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ,π)+1
) 1

p

 (9)

by definition of ρ̂n, and Proposition 11 shows that the right-hand side is r̄n.
Plug (6) into (9) to get the desired result.

We now study the consequences of the assumption on the empirical complexity
parameter introduced in Section 3.

Theorem 2. Under the assumptions of Theorem 1 together with Assumption 1,
with probability at least 1−δ,∫

Rdρ̂n ≤ rn ≤ inf
θ∈Θ

{
rn(θ)

}+2
(
Mφq ,n

δ

) 1
q+d

. (10)

Proof of Theorem 2. Put
γ= rn − inf

θ∈Θ
{
rn(θ)

}
.

Note that γ≥ 0. Then:(γ
2

)q
π

{
rn(θ)≤ γ

2
+ inf rn

}
≤

∫
[rn − rn]q

+dπ︸ ︷︷ ︸
=Mφq ,n

δ

≤ γqπ
{
rn(θ)≤ γ+ inf rn

}
.
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So: (γ
2

)q
π

{
rn(θ)≤ γ

2
+ inf rn

}
≤ Mφq ,n

δ

and, using Assumption 1, (γ
2

)q (γ
2

)d
≤ Mφq ,n

δ

which yields:

γ≤ 2
(
Mφq ,n

δ

) 1
q+d

.

We can also perform an explicit minimization of the oracle-type bound (8), which
leads to a variant of Theorem 2 under a non-empirical complexity assumption.

Definition 6. Put

Rn =min
{

u ∈R :
∫

[u−R(θ)]q
+π(dθ)= 2qMφq

δ

}
.

Assumption 2. There exists d > 0 such that, for any γ> 0,

π
{
θ ∈Θ : R(θ)≤ inf

θ′∈Θ
{
R(θ′)

}+γ}
≥ γd .

Theorem 3. Under the assumptions of Theorem 1 together with Assumption 2,
with probability at least 1−δ,

∫
Rdρ̂n ≤ Rn ≤ inf

θ∈Θ
R(θ)+2

q
q+d

(
Mφq ,n

δ

) 1
q+d

.

The proof is a direct adaptation of the proofs of Proposition 11 and Theorem 2.

5 Discussion and perspectives
We proposed a new type of PAC-Bayesian bounds, which makes use of Csiszár’s
f -divergence to generalize the Kullback-Leibler divergence. This is an extension
of the results in Bégin et al. (2016). In favourable contexts, there exists sophisti-
cated approaches to get better bounds, as discussed in the introduction. However,
the major contribution of our work is that our bounds hold in hostile situations
where no PAC bounds at all were available, such as heavy-tailed time series.
We plan to study the connections between our PAC-Bayesian bounds and afore-
mentionned approaches by Mendelson (2015) and Grünwald and Mehta (2016) in
future works.
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